Computer Science ›› 2025, Vol. 52 ›› Issue (11): 434-443.doi: 10.11896/jsjkx.250100146
• Information Security • Previous Articles Next Articles
ZHAO Tong, CHEN Xuebin, WANG Liu, JING Zhongrui, ZHONG Qi
CLC Number:
| [1]MOORE I N,SNYDER S L,MILLER C,et al.Confidentialityand Privacy in Health Care from the Patient's Perspective:Does HIPPA Help?[J].Health Matrix,2007,17:215. [2]VOIGT P,VON DEM BUSSCHE A.The eu general data protection regulation(gdpr):A Practical Guide(1st Ed.)[M].Cham:Springer International Publishing,2017. [3]CHENG X.On the personal information processing rules in our country's personal information protection law [J].Tsinghua Law,2021,15(3):55-73. [4]MCMAHAN B,MOORE E,RAMAGE D,et al.Communica-tion-efficient learning of deep networks from decentralized data[C]//Artificial Intelligence and Statistics.PMLR,2017:1273-1282. [5]BAGDASARYAN E,VEIT A,HUA Y,et al.How to backdoor federated learning[C]//International Conference on Artificial Intelligence and Statistics.PMLR,2020:2938-2948. [6]XUE M,NI S,WU Y,et al.Imperceptible and multi-channelbackdoor attack[J].Applied Intelligence,2024,54(1):1099-1116. [7]BAGDASARYAN E,SHMATIKOV V.Blind backdoors in deep learning models[C]//30th USENIX Security Symposium(USENIX Security 21).2021:1505-1521. [8]RAWAT A,LEVACHER K,SINN M.The devil is in theGAN:backdoor attacks and defenses in deep generative models[C]//European Symposium on Research in Computer Security.Cham:Springer Nature Switzerland,2022:776-783. [9]NGUYEN T D,RIEGER P,MIETTINEN M,et al.Poisoningattacks on federated learning-based IoT intrusion detection system[C]//Proc.Workshop Decentralized IoT Syst.Secur.(DISS).2020:1-7. [10]LIU Y,GARG S,NIE J,et al.Deep anomaly detection for time-series data in industrial iot:A communication-efficient on-device federated learning approach[J].IEEE Internet of Things Journal,2021(8):6348-6358. [11]CHEN M,SURESH A T,MATHEWS R,et al.Federatedlearning of n-gram language models[J].arXiv:1910.03432,2019. [12]LI T,SAHU A K,ZAHEER M,et al.Federated optimization in heterogeneous networks[C]//Proceedings of Machine Learning and Systems.2020:429-450. [13]LI X,JIANG M,ZHANG X,et al.Fedbn:Federated learning on non-iid features via local batch normalization[J].arXiv:2102.07623,2021. [14]LI Q,HE B,SONG D.Model-contrastive federated learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:10713-10722. [15]GU T,DOLAN-GAVITT B,GARG S.Badnets:Identifying vulnerabilities in the machine learning model supply chain[J].ar-Xiv:1708.06733,2017. [16]ALBERTI M,PONDENKANDATH V,WURSCH M,et al.Are you tampering with my data?[C]//Proceedings of the Euro-pean Conference on Computer Vision(ECCV).2018. [17]BARNI M,KALLAS K,TONDI B.A new backdoor attack in cnns by training set corruption without label poisoning[C]//2019 IEEE International Conference on Image Processing(ICIP).IEEE,2019:101-105. [18]XIAO Q,CHEN Y,SHEN C,et al.Seeing is not believing:Camouflage attacks on image scaling algorithms[C]//28th USENIX Security Symposium(USENIX Security 19).2019:443-460. [19]LI Y,LI Y,WU B,et al.Invisible backdoor attack with sample-specific triggers[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:16463-16472. [20]SHAFAHI A,HUANG W R,NAJIBI M,et al.Poison frogs! targeted clean-label poisoning attacks on neural networks[J].arXiv:1804.00792,2018. [21]GAO Y,LI Y,ZHU L,et al.Not all samples are born equal:Towards effective clean-label backdoor attacks[J].Pattern Recognition,2023,139:109512. [22]LIN J,XU L,LIU Y,et al.Composite backdoor attack for deep neural network by mixing existing benign features[C]//Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security.2020:113-131. [23]WANG H,SREENIVASAN K,RAJPUT S,et al.Attack of the tails:Yes,you really can backdoor federated learning[J].Advances in Neural Information Processing Systems,2020,33:16070-16084. [24]YOO K Y,KWAK N.Backdoor attacks in federated learning by rare embeddings and gradient ensembling[J].arXiv:2204.14017,2022. [25]ZHANG J,CHEN B,CHENG X,et al.PoisonGAN:Generative poisoning attacks against federated learning in edge computing systems[J].IEEE Internet of Things Journal,2020,8(5):3310-3322. [26]GONG X,CHEN Y,HUANG H,et al.Coordinated backdoor attacks against federated learning with model-dependent triggers[J].IEEE Network,2022,36(1):84-90. [27]XIE C,HUANG K,CHEN P Y,et al.Dba:Distributed backdoor attacks against federated learning[C]//International Conference on Learning Representations.2019. [28]SUN Z,KAIROUZ P,SURESH A T,et al.Can you really backdoor federated learning?[J].arXiv:1911.07963,2019. [29]LIU Y,YI Z,CHEN T.Backdoor attacks and defenses in feature-partitioned collaborative learning[J].arXiv:2007.03608,2020. [30]ZHOU X,XU M,WU Y,et al.Deep model poisoning attack on federated learning[J].Future Internet,2021,13(3):73. [31]ZHANG Z,PANDA A,SONG L,et al.Neurotoxin:Durable backdoors in federated learning[C]//International Conference on Machine Learning.PMLR,2022:26429-26446. [32]BUCILUĂ C,CARUANA R,NICULESCU-MIZIL A.Model compression[C]//Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mi-ning.2006:535-541. [33]HINTON G,VINYALS O,DEAN J.Distilling the knowledge in a neural network[J].arXiv:1503.02531,2015. [34]CAZENAVETTE G,WANG T,TORRALBA A,et al.Dataset distillation by matching training trajectories[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:4750-4759. [35]NGUYEN T,CHEN Z,LEE J.Dataset meta-learning from kernel ridge-regression[J].arXiv:2011.00050,2020. [36]NGUYEN T,NOVAK R,XIAO L,et al.Dataset distillationwith infinitely wide convolutional networks[J].Advances in Neural Information Processing Systems,2021,34:5186-5198. [37]ZHAO B,BILEN H.Dataset condensation with differentiable siamese augmentation[C]//International Conference on Machine Learning.PMLR,2021:12674-12685. [38]ZHAO B,MOPURI K R,BILEN H.Datasetcondensation with gradient matching[J].arXiv:2006.05929,2020. [39]WANG T,ZHU J Y,TORRALBA A,et al.Dataset distillation[J].arXiv:1811.10959,2018. [40]RUBINSTEIN R.The cross-entropy method for combinatorial and continuous optimization[J].Methodology and Computing in Applied Probability,1999,1(2):127-190. [41]LECUN Y,BOTTOU L,BENGIO Y,et al.Gradient-basedlearning applied to document recognition[C]//Proceedings of the IEEE.2002:2278-2324. [42]XIAO H,RASUL K,VOLLGRAF R.Fashion-mnist:a novel image dataset for benchmarking machine learning algorithms[J].arXiv:1708.07747,2017. [43]KRIZHEVSKY A,HINTON G.Learning multiple layers of features from tiny images[J/OL].https://www.cs.utoronto.ca/~kriz/learning-features-2009-TR.pdf. [44]CAO X,JIA J,GONG N Z.Provably secure federated learning against malicious clients[C]//Proceedings of the AAAI Confe-rence on Artificial Intelligence.2021:6885-6893. [45]KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Imagenetclassification with deep convolutional neural networks[J/OL].https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf. [46]NGUYEN T D,NGUYEN T,LE NGUYEN P,et al.Backdoor attacks and defenses in federated learning:Survey,challenges and future research directions[J].Engineering Applications of Artificial Intelligence,2024,127:107166. |
| [1] | WU Jiagao, YI Jing, ZHOU Zehui, LIU Linfeng. Personalized Federated Learning Framework for Long-tailed Heterogeneous Data [J]. Computer Science, 2025, 52(9): 232-240. |
| [2] | DENG Jiayan, TIAN Shirui, LIU Xiangli, OUYANG Hongwei, JIAO Yunjia, DUAN Mingxing. Trajectory Prediction Method Based on Multi-stage Pedestrian Feature Mining [J]. Computer Science, 2025, 52(9): 241-248. |
| [3] | JIANG Yunliang, JIN Senyang, ZHANG Xiongtao, LIU Kaining, SHEN Qing. Multi-scale Multi-granularity Decoupled Distillation Fuzzy Classifier and Its Application inEpileptic EEG Signal Detection [J]. Computer Science, 2025, 52(9): 37-46. |
| [4] | FENG Yimeng, FENG Yan, XIE Sijiang, ZHANG Qing. Proxy-based Bidirectional Coin Mixing Mechanism of Blockchain [J]. Computer Science, 2025, 52(8): 385-392. |
| [5] | DAI Xiangguang, HE Chenglong, GUAN Mingyu, ZHANG Wei, ZHOU Yang, LIU Jianfeng, LYU Qingguo. State-decomposition Distributed Dual Averaging Algorithm for Privacy Online ConstrainedOptimization over Directed Networks [J]. Computer Science, 2025, 52(8): 411-420. |
| [6] | LIU Le, XIAO Rong, YANG Xiao. Application of Decoupled Knowledge Distillation Method in Document-level RelationExtraction [J]. Computer Science, 2025, 52(8): 277-287. |
| [7] | ZHANG Hang, WEI Shoulin, YIN Jibin. TalentDepth:A Monocular Depth Estimation Model for Complex Weather Scenarios Based onMultiscale Attention Mechanism [J]. Computer Science, 2025, 52(6A): 240900126-7. |
| [8] | WANG Chundong, ZHANG Qinghua, FU Haoran. Federated Learning Privacy Protection Method Combining Dataset Distillation [J]. Computer Science, 2025, 52(6A): 240500132-7. |
| [9] | LIU Runjun, XIAO Fengjun, HU Weitong, WANG Xu. Reversible Data Hiding in Fully Encrypted Images Based on Pixel Interval Partitioning andPrediction Recovery [J]. Computer Science, 2025, 52(6A): 240900030-8. |
| [10] | YUAN Lin, HUANG Ling, HAO Kaile, ZHANG Jiawei, ZHU Mingrui, WANG Nannan, GAO Xinbo. Adversarial Face Privacy Protection Based on Makeup Style Patch Activation [J]. Computer Science, 2025, 52(6): 405-413. |
| [11] | SI Yuehang, CHENG Qing, HUANG Jincai. Multi-assistant Dynamic Setting Method for Knowledge Distillation [J]. Computer Science, 2025, 52(5): 241-247. |
| [12] | CAO Tengfei, YIN Runtian, ZHU Liang, XU Changqiao. Survey of Personalized Location Privacy Protection Technologies [J]. Computer Science, 2025, 52(5): 307-321. |
| [13] | ZHENG Xu, HUANG Xiangjie, YANG Yang. Reversible Facial Privacy Protection Method Based on “Invisible Masks” [J]. Computer Science, 2025, 52(5): 384-391. |
| [14] | WANG Yifei, ZHANG Shengjie, XUE Dizhan, QIAN Shengsheng. Self-supervised Backdoor Attack Defence Method Based on Poisoned Classifier [J]. Computer Science, 2025, 52(4): 336-342. |
| [15] | JIANG Yufei, TIAN Yulong, ZHAO Yanchao. Persistent Backdoor Attack for Federated Learning Based on Trigger Differential Optimization [J]. Computer Science, 2025, 52(4): 343-351. |
|
||