Computer Science ›› 2026, Vol. 53 ›› Issue (1): 39-50.doi: 10.11896/jsjkx.250400064
• Research and Application of Large Language Model Technology • Previous Articles Next Articles
LIU Dayong1,2, DONG Zhiming1, GUO Qisheng1, GAO Ang3, QIU Xuehuan1
CLC Number:
| [1]LEI K H,LI Y L,SHEN X H.Research on the Application of Large Models in Military Action Planning[J].Military Digest,2025(5):32-35. [2]XU R M.Combat Modeling and Simulation[M].Beijing:Mili-tary Science Press,2012. [3]LI C,YANG B,WANG Y F,et al.Research on Army Combined Operations Experimentation Systems[M].Beijing:Ordnance Industry Press,2022. [4]SI G,WU X,WANG Y,et al.Introduction to Joint Operations Experimentation[M].Beijing:National Defense Industry Press,2024. [5]CAO Y H,GUAN Q B,BAI H B.Theory and Technology of Combat Experimentation[M].Beijing:National Defense Industry Press,2013. [6]HU JW.Combat Simulation Experimental Design and Analysis[M].Beijing:National Defense Industry Press,2010 [7]Palantir Technologies.AIP:AI Platform for Defense[EB/OL].(2023).https://www.palantir.com/solutions/defense/. [8]XIN X.Development Status of Generative Artificial Intelligence in the U.S.Military Command and Control Domain[N].China Aviation News,2024-06-18(3961). [9]Scale AI.Force-Multiply with Donovan in Action[EB/OL].[2025-04-07].https://scale.com/donovan. [10]GOECKS V G,WAYTOWICH N R.COA-GPT:GenerativePre-trained Transformers for Accelerated Course of Action Development in Military Operations[C]//Proceedings of the NATO Science and Technology Organization Symposium(ICMCIS).Koblenz,Germany:NATO Science and Technology Organization,2024. [11]SUN Y X,ZHAO J J,XIE Y X,et al.Self-generating war game AI:Task planning of double-layer agent based on large language model[J/OL].Control and Decision.https://doi.org/10.13195/j.kzyjc.2023.1497. [12]WENG L.LLM-powered Autonomous Agents[DB/OL].(2023-06-23)[2024-06-30].https://lilianweng.github.io/posts/2023-06-23-agent/. [13]SUN Y F,WU J,LI Z,et al.Research on Large Sequence Model for Wargame Simulation[C]//Proceedings of the 10th “Complexity of War and War Simulation” High-Level Academic Seminar.National Defense University Joint Warfare College,2023:30-37. [14]Yuanting Technology launches decision optimization big model and intelligent agent suite[EB/OL].(2025-04-03)[2025-04-07].https://mp.weixin.qq.com/s/_nzl_QNMOk6usdB9LplpHA. [15]YOUNGJOON L,TAEHYUN P,YUNHO L,et al.Exploring Potential Prompt Injection Attacks in Federated Military LLMs and Their Mitigation[J].arXiv:2501.18416,2025. [16]REN B C,QIAO S F,YU W H,et al.KnowRL:ExploringKnowledgeable Reinforcement Learning for Factuality[J].ar-Xiv:2506.19807v1,2025. [17]ALBERT T, SUN Z F,CHRISTOPHER D S.Model-Preserving Adaptive Rounding[J].arXiv:2505.22988v1,2025. [18] KIM J H,KIM J,KWON S,et al.KVzip:Query-Agnostic KV Cache Compression with Context Reconstruction[J].arXiv:2505.23416,2025. [19]DING X, SUN R, ZHANG Y J,et al.DipSVD:Dual-importance Protected SVD for Efficient LLM Compression[J].arXiv:2506.20353,2025. [20]WANG Z R,LAN T F,SU Z Y,et al.Towards Efficient LLM Storage Reduction via Tensor Deduplication and Delta Compression[J].arXiv:2505.06252,2025. [21]LIU X Y,WEN Z C,WANG S B,et al.Shifting AI Efficiency From Model-Centric to Data-Centric Compression[J].arXiv:2505.19147v1,2025. |
| [1] | SHAO Xinyi, ZHU Jingwei, ZHANG Liang. LLM-based Business Process Adaptation Method to Respond Long-tailed Changes [J]. Computer Science, 2026, 53(1): 29-38. |
| [2] | PAN Jie, WANG Juan, WANG Nan. Large Language Models and Rumors:A Survey on Generation and Detection [J]. Computer Science, 2025, 52(11): 1-12. |
| [3] | BAO Zepeng, QIAN Tieyun. Survey on Large Model Red Teaming [J]. Computer Science, 2025, 52(1): 34-41. |
| [4] | LI Jiahui, ZHANG Mengmeng, CHEN Honghui. Large Language Models Driven Framework for Multi-agent Military Requirement Generation [J]. Computer Science, 2025, 52(1): 65-71. |
| [5] | YANG Pengfei, WANG Shuqi, HUANG Jiayang, ZHANG Wenjuan, WANG Quan, ZHONG Haodi. Learning Path Recommendation Method Based on Feature Similarity and Jaccard Median [J]. Computer Science, 2024, 51(10): 153-161. |
| [6] | TIAN Chen, WANG Zhi-wei. Robust Subgroup ID-based Multi-signature Scheme [J]. Computer Science, 2022, 49(12): 346-352. |
| [7] | YE Sheng-nan, CHEN Jian-hua. Security Analysis and Improvement of Strongly Secure Certificateless Digital Signature Scheme [J]. Computer Science, 2021, 48(10): 272-277. |
| [8] | WEI Xing-jia, ZHANG Jing-hua,LIU Zeng-fang,LU Dian-jun. Identity Based Aggregate Signature Scheme with Forward Security [J]. Computer Science, 2018, 45(6A): 387-391. |
| [9] | WEI Zhen-yu, LU Xiang and SHI Ting-jun. Cross-domain PKI-based Key Agreement Protocol [J]. Computer Science, 2017, 44(1): 155-158. |
| [10] | XIA Zheng-dong,BU Tian-ming and ZHANG Ju-yang. Analysis and Improvement of SPFA Algorithm [J]. Computer Science, 2014, 41(6): 180-184. |
| [11] | SUN Hua,WANG Ai-min and ZHENG Xue-feng. Provably Secure Identity-based Threshold Ring Signcryption Scheme in Standard Model [J]. Computer Science, 2013, 40(5): 131-135. |
| [12] | . Efficient Hierarchical Identity-based Signature Scheme [J]. Computer Science, 2012, 39(8): 67-69. |
| [13] | . Provable Secure Identity-based Threshold Proxy Signcryption Scheme [J]. Computer Science, 2012, 39(4): 101-105. |
| [14] | . Efficient and Provably Secure Identity-based Proxy Aggregate Signature Scheme [J]. Computer Science, 2012, 39(1): 44-47. |
| [15] | WANG Tian-qin,SU Li-wen. Secure ID-based Verifiably Encrypted Signature without Random Oracles [J]. Computer Science, 2011, 38(Z10): 101-105. |
|
||