Computer Science ›› 2013, Vol. 40 ›› Issue (11): 280-286.

Previous Articles     Next Articles

Population Dynamics-based Optimization

HUANG Guang-qiu,LI Tao and LU Qiu-qin   

  • Online:2018-11-16 Published:2018-11-16

Abstract: To solve large-scale optimization problems(OP),a population dynamics-based optimization algorithm with global convergence was constructed based on the population dynamics theory.In the algorithm,each population is just an alternative solution of OP,and a feature attribute of a population corresponds to a variable of an alternative solution.The principle of orthogonal Latin squares is used to produce initial values of populations so as to cover search space with balance dispersion and neat comparability.The competition,mutual-benefit,predator-prey,mergence,mutation and selection behavior between any two populations are used to construct evolution policies of populations so as to ensure population suitability index(PSI)of each population to keep either to stay unchanged or to transfer toward better states,therefore the global convergence is ensured.During evolution process of populations,each population’s transferring from one state to another realizes the search for the global optimum solution.The stability condition of a reducible stochastic matrix was applied to prove the global convergence of the algorithm.The case study shows that the algorithm is efficient.

Key words: Evolutionary computation,Function optimization,Biogeography-based optimization,Population dynamics

[1] 王顺庆,王万雄,徐海根.生态学稳定性理论与方法[M].北京:科学出版社,2004
[2] 陆征一,周义仓.数学生物学进展[M].北京:科学出版社,2006
[3] 李长生.一类n维Lotka-Volterra系统稳定平衡点的判别[J].潍坊学院学报,2003,3(6):l-2
[4] 程惠东,孟新柱,王芳.一类时滞非自治Lotka-Volterra扩散生态系统的全局吸引性[J].中山大学学报:自然科学版,2008,47(2):19-22
[5] 周桦,刘佳.带扩散的具有Holling-IV类功能性反应的捕食模型的性质[J].南京工业大学学报,2007,29(5):66-69
[6] 吴兴杰.具有Holling IV功能反应的脉冲食物链模型的动力学性质[J].桂林电子科技大学学报,2008,28(03):248-253
[7] 郑宗剑,林怡平.一类具有时滞Holling-IV型捕食-食饵系统的Hopf分支[J].云南民族大学学报:自然科学版,2007,16(01):18-21
[8] 赵延忠.具有反应扩散的Leslie两种群生物竞争模型的稳定性[J].青海大学学报,2007,25(5):62-65
[9] 庞国萍,陈兰荪.具有脉冲效应和Holling IV功能性反应的捕食者食饵系统分析[J].南京师大学报:自然科学版,2007,30(2):1-5
[10] 田灿荣.一类带时滞竞争模型的周期解[J].生物数学学报,2007,22(3):431-440
[11] Simon D.Biogeography-based Optimization[J].IEEE Transactions:Evolutionary Computation,2008,2(6):702-713
[12] 王存睿,王楠楠,段晓东,等.生物地理学优化算法综述[J].计算机科学,2010,7(7):34-38
[13] 中国现场统计研究会三次设计组.正交法和三次设计[M].北京:科学出版社,1987
[14] Iisufescu M.Finite Markov Processes and Their Applications[M].Wiley:Chichester,1980
[15] 任子晖,王坚,高岳林.马尔科夫链的粒子群优化算法全局收敛性分析[J].控制理论与应用,2011,8(4):462-466
[16] 王宜举,修乃华.非线性优化理论[M].北京:科学出版社,2012
[17] 崔志华,曾建潮.微粒群优化算法[M].北京:科学出版社,2011
[18] 陈兰荪,孟新柱,焦建军.生物动力学[M].北京:科学出版社,2009

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!