Computer Science ›› 2013, Vol. 40 ›› Issue (12): 248-250.
Previous Articles Next Articles
ZUO Hong-kun,JI Quan-bao and ZHOU Yi
[1] Kummer U,Olsen L F,Dixon C J,et al.Switching from simple to complex oscillations incalcium signaling[J].Biophys J,2000,79:1188-1195 [2] Woods N M,Kuthbertson K S R,Cobbold P H.Agonist-induced oscillations in hepatocytes[J].Cells Calcium,1987,8:79-100 [3] Goldbeter A.Biochemical oscillations and cellular rhythms[M].Cambridge:Cambridge University Press,1996 [4] Borghans J A M,Dupont G,Goldbeter A.Complex intracellular calcium oscillations.A theoretical exploration of possible mechanisms[J].Biophys Chem,1997,66(1):25-41 [5] Nabajyoti D,Tarini K D.Determination of supercritical and subcritical Hopf bifurcation on a two-dimensional chaotic model [J].Internatioal Journal of Advanced Scientific and Technical Research,2012,1:207-220 [6] Jing X,Yu Z X,Yuan R.Stability and Hopf bifurcation in a symetrric lotka-volterra predator system with delays [J].Electric Journal of Differential Equations,2013:1-16 [7] 严传魁,刘深泉.动态IP3-Ca2+振荡模型的数值分析[J].生物数学学报,2005,21(5):339-344 [8] 周莉莉,李旭东,常玉.Houart-Dupont钙振荡模型的复杂动态[J].北京化工大学学报,2010,37(3):134-139 [9] Wiggin S.Introduction to applied nonlinear dynamical systems and chaos [M].Berlin:Springer,1990 [10] Jing Z J,Chang Y,Guo B L.Bifurcation and chaos in discrete FitzHugh Nagumo systems [J].Chaos Solitions and Fractals,2004,21(3):701-710 [11] 王青云,石霞,陆启韶.神经元耦合系统的同步动力学[M].北京:科学出版社,2008 [12] 李绍文.连续时延神经网络模型的Hopf分岔分析[J].计算机科学,2002,9(9):47-49 [13] Gentile F S,Moiola J L,Paolini E E.On the study of bifurcation in delay-differential equations:A frequency-domain approach [J].Int J Bifurcation Chaos,2012,22(6):125-137 |
No related articles found! |
|