Computer Science ›› 2013, Vol. 40 ›› Issue (12): 248-250.

Previous Articles     Next Articles

Hopf Bifurcation Analysis and Computer Simulation of Cell Calcium Oscillation Model

ZUO Hong-kun,JI Quan-bao and ZHOU Yi   

  • Online:2018-11-16 Published:2018-11-16

Abstract: The bifurcation mechanisms of the Borghans-Dupont model of calcium oscillation were investigated.By applying the centre manifold and bifurcation theory,a theoretical analysis of bifurcation in this model was first performed.The results not only exhibite the Hopf bifurcation but also show that the supercritical Hopf bifurcation and the subcritical Hopf bifurcation play a great role in the calcium oscillations.Our computer simulations,including the bifurcation diagram of fixed points,the bifurcation diagram of the system in two dimensional parameter space and time series,have been plotted in order to illustrate the correctness of the theoretical and dynamical analysis.

Key words: Calcium oscillation,Hopf bifurcation,Centre manifold,Equilibrium,Stability,Limit cycle

[1] Kummer U,Olsen L F,Dixon C J,et al.Switching from simple to complex oscillations incalcium signaling[J].Biophys J,2000,79:1188-1195
[2] Woods N M,Kuthbertson K S R,Cobbold P H.Agonist-induced oscillations in hepatocytes[J].Cells Calcium,1987,8:79-100
[3] Goldbeter A.Biochemical oscillations and cellular rhythms[M].Cambridge:Cambridge University Press,1996
[4] Borghans J A M,Dupont G,Goldbeter A.Complex intracellular calcium oscillations.A theoretical exploration of possible mechanisms[J].Biophys Chem,1997,66(1):25-41
[5] Nabajyoti D,Tarini K D.Determination of supercritical and subcritical Hopf bifurcation on a two-dimensional chaotic model [J].Internatioal Journal of Advanced Scientific and Technical Research,2012,1:207-220
[6] Jing X,Yu Z X,Yuan R.Stability and Hopf bifurcation in a symetrric lotka-volterra predator system with delays [J].Electric Journal of Differential Equations,2013:1-16
[7] 严传魁,刘深泉.动态IP3-Ca2+振荡模型的数值分析[J].生物数学学报,2005,21(5):339-344
[8] 周莉莉,李旭东,常玉.Houart-Dupont钙振荡模型的复杂动态[J].北京化工大学学报,2010,37(3):134-139
[9] Wiggin S.Introduction to applied nonlinear dynamical systems and chaos [M].Berlin:Springer,1990
[10] Jing Z J,Chang Y,Guo B L.Bifurcation and chaos in discrete FitzHugh Nagumo systems [J].Chaos Solitions and Fractals,2004,21(3):701-710
[11] 王青云,石霞,陆启韶.神经元耦合系统的同步动力学[M].北京:科学出版社,2008
[12] 李绍文.连续时延神经网络模型的Hopf分岔分析[J].计算机科学,2002,9(9):47-49
[13] Gentile F S,Moiola J L,Paolini E E.On the study of bifurcation in delay-differential equations:A frequency-domain approach [J].Int J Bifurcation Chaos,2012,22(6):125-137

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!