Computer Science ›› 2013, Vol. 40 ›› Issue (9): 111-115.

Previous Articles     Next Articles

Research on Conflict-measurable Multiple Information Fusion Technology

CHEN Chao,CHEN Xing-yuan,WANG Yong-wei and WANG Yi-gong   

  • Online:2018-11-16 Published:2018-11-16

Abstract: As traditional multiple source information fusion system based on D-S evidence theory can not measure conflict and solve other problems,a conflict-measurable multiple source information fusion system was presented.Firstly,we presented a method which takes subjectivity and objectivity into consideration to get BPA based on decision-making table.Secondly,we defined a conflict measure based on conflict value and consistent value followed in the conflict matrix and consistent matrix.Next,we determined the weight value of the evidence in the combination rules based on the avera-ge conflict value of the evidence with others.Finally,we made full use of information produced from conflict evidence,and presented a new combination rules based on conflict information.Simulation experiment shows that the conclusion obtained by the fusion method is not only in accordance with human logical reasoning,but also reduces the uncertainty of the conclusion greatly.

Key words: Multiple source,D-S evidence theory,Conflict measure,Combination rules,Information fusion,BPA

[1] Edlund J,Gronkvist M,Lingvall A,et al.Rule Based Situation Assessment for Sea-Surveillance[C]∥Multisensor,Multisource Information Fusion.2006,3
[2] Lefever E,Colot O.Belief function combination and conflictmanagement[J].Information Fusion,2002,3(2):149-162
[3] Fouque L,Appriou A,Pieczynski W.An evidential Markovian model for data fusion and unsupervised image classification[C]∥Proceedings of the Third International Conference on Information Fusion.2000:25-32
[4] Brodzik A K,Enders R H.Semigroup structure of sing Leton Dempster-Shafer evidence accumulation[J].IEEE Transactions on Information Theory,2009,5(11):5241-5250
[5] Quost B,Masson M H,Denoeux T.Classifier fusion in theDempster-Shafer framework using optimized t-norm based combination rules[J].International Journal of Approximate Rea-soning,2011,52:353-374
[6] Quost B,Denoeux T,Masson M H.Pairwise classifierc Ombination using belief functions[J].Pattern Recogn Itionletters,2007,8(5):644-653
[7] Weiru L.Analyzing the degree of conflict among belie F funetions[J].Artificial Intelligent,2006,0:909-924
[8] 路艳丽.雷英杰.王晶晶.基于粗糙D-S理论的身份融合方法[J].系统工程与电子技术,2007,9(10):1749-1752
[9] 康兵义,李娅,邓勇,等.基于区间数的基本概率指派生成方法及应用[J].电子学报,2012,0(6):1092-1096
[10] Lefevre E,Colot O.Belief function comnibation and conflictmanagement[J].Information Fusion,2002,3(2):149-162
[11] 杨风暴,王肖霞.D-S证据理论的冲突证据合成方法[M].北京:国防工业出版社,2010
[12] Yager R R.On the Dempster-Shafer Framework and NewCombintion rules[J].Information Systems,1987,1(4):93-138
[13] 孙全,叶秀清,顾伟康.一种新的基于证据理论的合成公式[J].电子学报,2000,28(8):117-119
[14] Zadeh L A.Review of Shafer’s mathematical theory of evidence[J].Artificial Intelligent Magazine,1984,5(3):81-83
[15] 胡昌华,司小胜,周志杰,等.新的证据冲突衡量标准下的D-S改进算法[J].电子学报,2009,37(7):1578-1583
[16] 杨凯,马建峰,杨超.无线网状网中基于D-S证据理论的可信路由[J].通信学报,2011,32(5):89-96
[17] Leung Y,Ji Nan-nan,Ma Jiang-hong.An integrated information fusion approach based on the theory of evidence and group decision-making[J].Information Fusion,2012,8(2):1-13
[18] 叶芝慧.信息论与编码[M].北京:电子工业出版社,2011
[19] Florea M C,Jousselme A L,Bosse E,et al.Robust combination rules for evidence theory[J].Information Fusion,2009,0:183-197
[20] Shafer G.A Mathematical Theory of Evidence[M].PriNceton University Press,1976

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!