Computer Science ›› 2014, Vol. 41 ›› Issue (Z11): 57-60.

Previous Articles     Next Articles

EMD-FSVM Prediction for Nonstationary Time Series

GONG Bang-ming,WANG Wen-bo and ZHAO Pan   

  • Online:2018-11-14 Published:2018-11-14

Abstract: This paper proposed a novel method to predict non-stationary time series,based on the empirical mode decomposition and fuzzy support vector machine.Firstly,uisng EMD,the non-stationary time series are decomposed into single modal components,reducing the prediction signal nonlinear complexity.Then,using the fuzzy support vector machine,each intrinsic mode function is predicted.Finally,the results predicted by each intrinsic mode function are superimposed to obtain the final forecast.Using Lorenz and sunspot month smooth value sequence with noise as the experimental data,our method was compared with BP neural network prediction and SVM prediction method by experiments.And this method has stronger adaptability to the sequence signal with isolated points and noise,and better prediction accuracy.

Key words: Non-stationary time series,Empirical mode decomposition,Fuzzy support vector machine,Combination forecast

[1] Vapnik V.The nature of statistical learning theory[M].Sprin-ger,2000
[2] Chapelle,Olivier.Training a support vector machine in the primal[J].Neural Computation,2007,19(5):1155-1178
[3] 杨晓伟,郝志峰.支持向量机算法分析与设计[M].北京:科学出版社,2013
[4] 阳爱民.模糊分类模型及其集成方法[M].北京:科学出版社,2008
[5] 马芳芳,仝卫国,宋雨倩.模糊支持向量机的研究与应用[J].电脑与信息技术,2013(1):25-29
[6] 张永,迟忠先.基于时间序列的模糊支持向量回归[J].计算机工程,2007,33(19):47-48
[7] Sun Z,Sun Y.Fuzzy support vector machine for regression estimation[C]∥IEEE International Conference on Systems,Man and Cybernetics,2003.IEEE,2003,4:3336-3341
[8] Batuwita R,Plalde V.FSVM_CIL:fuzzy support vector ma-chines for class imbalance learning[J].IEEE Transactions on Fuzzy Systems,2010,8(3):558-571
[9] 于德介,程军圣,杨宇.Hilbert-Huang变换在齿轮故障诊断中的应用[J].机械工程学报,2005,41(6):102-107
[10] 玄兆燕,杨公训.经验模态分解法在大气时间序列预测中的应用[J].自动化学报,2008,34(1):97-101
[11] Huang N E,Shen Z,Long S R,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proceedings of the Royal Society of London.Series A:Mathematical,Physical and Engineering Sciences,1998,454(1971):903-995
[12] 吴炳胜,徐芮,姜金俊.基于 EMD-SVM 镜像延拓的转子故障诊断研究[J].河北工程大学学报:自然科学版, ISTIC,2012,29(1)
[13] 程军圣,于德介,杨宇.Hilbert-Huang 变换端点效应问题的探讨[J].振动与冲击,2005,24(6):40-42
[14] 邓乃扬,田英杰.支持向量机——理论、算法与拓展[M].北京:科学出版社,2009
[15] Stark J,Broomhead D S,Davies M E,et al.Takens embedding theorems for forced and stochastic systems[J].Nonlinear Ana-lysis:Theory,Methods & Applications,1997,30(8):5303-5314
[16] 赵佩章,陈健,赵文桐.太阳黑子对厄尔尼诺,拉尼娜的影响[J].地球物理学进展,2001,16(3):85-90
[17] 方炜,刘春,张春生.太阳黑子与全球强震活动[J].高原地震,2003,15(4):27-31
[18] 庄得新,周玉芳.太阳黑子活动对近地空间的电磁辐射影响[J].北京理工大学学报,2005(1)

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!