Computer Science ›› 2015, Vol. 42 ›› Issue (8): 300-304.

Previous Articles     Next Articles

Background Subtraction Based on Local Gradient Feature

ZHANG Xiao-jun, LIU Zhi-jing and CHEN Kun   

  • Online:2018-11-14 Published:2018-11-14

Abstract: The relation between accuracy and the study speed of the background model was discussed.The theoretical gradient expectation was estimated with the accurate gradient background model.Based on Gaussian model,the probability of the deviation between the actual gradient and its expectation was given,leading to a similarity measurement of the gradient feature using no texture message.The similarity was then used to adjust the threshold for binarization of the difference image,which means the fusing use of grey level message and the gradient message.Experiments show that the proposed method does have some improvement on foreground segmentation.

Key words: Background subtraction,Noise,Gaussian model,Gradient feature,Similarity,Pre-calculation

[1] 王亮,胡卫明,谭铁牛.人运动的视觉分析综述[J]计算机学报,2002,25(3):225-237Wang Liang,Hu Wei-ming,Tan Tie-niu.A survey of visualanalysis of human motion[J].Chinese Journal of Computers,2002,25(3):225-237
[2] Stauffer C,Grimson W E L.Adaptive background mixture mo-dels for real-time tracking[C]∥Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Fort Collins,USA,1999:23-25
[3] Wren C,Azarbayejani A,Darrell T,et al.Pfinder:realtime tracking of the human body[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):780-785
[4] Tuzel O,Porikli F,Meer P.A Bayesian approach to background modeling[C]∥Proceedings of IEEE Computer Society Confe-rence on Computer Vision and Pattern Recognition.Washington DC,USA:IEEE,2005:58-65
[5] Kim H,Sakamoto R,Kitahara I,et al.Background subtraction using generalised Gaussian family model[J].IEEE Electronics Letters,2008,4(3):189-190
[6] Elgammal A,Duraisewami R,Harwood D,et al.Background and foreground modeling using nonparametric kernel density estimation for visual surveillance[J].Proceedings of IEEE,2002,0(7):1151-1163
[7] Elgammal A,Harwood D,Davis L S.nonparametric model for background subtracting [C]∥Proceedings of 6th European Conference on Computer Vision.Dublin,2000:751-767
[8] Monnet A,Mittal A,Paragios N,et al.Background modeling and subtraction of dynamic scenes[C]∥Proceedings of the 9th International Conference on Computer Vision.Washington DC,USA:IEEE,2003:1305-1312
[9] Ojala T,Pietikainen M,Maenpaa T.Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(7):971-987
[10] Mason M,Duric Z.Using histograms to detect and track objects in color video[C]∥Proceedings of 30th Applied Imagery Pattern Recognition Workshop.Washington DC,USA:IEEE,2001:154-159
[11] Matsuyama T,Ohya T,Habe H.Background subtraction fornonstationary scenes[C]∥Proceedings of Asian Conference on Computer Vision.Taipei,China:IEEE,2000:622-667
[12] Heikkila M,Pietikainen M.A texture-based method for mode-ling the background and detecting moving objects[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28(4):657-662
[13] 徐剑,丁晓青,王生进,等.一种融合局部纹理和颜色信息的背景减除方法[J].自动化学报,2009,35(9):1145-1150 Xu Jian,Ding Xiao-qing,Wang Sheng-jin,et al.Background Subtraction Based on a Combination of Local Texture and Color[J].Acta Automatica Sinica,2009,5(9):1145-1150
[14] 李志焕.改进型的LBP算法及其在运动目标检测中的应用[D].广州:中山大学,2009 Li Zhi-huan.Improved LBP Algorithm and its Application in Motion Detection[D].Guangzhou: Sun Yat-sen University,2009
[15] 陈雨丝.基于背景差分的光照鲁棒性运动目标检测与跟踪技术研究[D].成都:西南交通大学,2011 Chen Yu-si.Research on Moving Objects Detection and Tracking Based on Background Subtraction with Illumination Robustness[D].Chengdu:Southwest Jiaotong University,2011
[16] 邓宇,李振波,李华.图切割支持的融合颜色和梯度特征的实时背景减除方法[J].计算机辅助设计与图形学学报,2006,18(11):1741-1747 Deng Yu,Li Zhen-bo,Li Hua.A Fusing Color and Gradient Features Approach to Real-time Subtraction using Graph Cuts[J].Journal of Computer-Aided Design & Computer Graphics,2006,18(11):1741-1747
[17] Koller D,Weber J,Huang T,et al.Towards robust automatic traffic scene analysis in real-time[C]∥The 12th International Computer Vision and Image Processing Conference.1994:126-131
[18] 张旗,梁德群,樊鑫,等,基于小波域的图像噪声类型识别与估计[J].红外与毫米波学报,2004,23(4):281-285 Zhang Qi,Liang De-qun,Fan Xin,et al.Identifying of Noise Types and Estimation of Noise Level for a Noisy Image in Wavelet Domain[J].Journal of Infrared and Millim Waves,2004,23(4):281-285

No related articles found!
Full text



No Suggested Reading articles found!