Computer Science ›› 2016, Vol. 43 ›› Issue (9): 39-46.doi: 10.11896/j.issn.1002-137X.2016.09.007

Previous Articles     Next Articles

FP-CNNH:A Fast Image Hashing Algorithm Based on Deep Convolutional Neural Network

LIU Ye, PAN Yan, XIA Rong-kai, LIU Di and YIN Jian   

  • Online:2018-12-01 Published:2018-12-01

Abstract: In the big data era,application research on image retrieval technology for large-scale data is a hot field.Recent years,image hash algorithm has attracted much attention in large-scale image retrieval system in order to improve the retrieval efficiency and reduce the storage space.However,there are some issues with existing supervised hash code learning algorithms.Most of the supervised hash algorithms need to use image feature extractor for obtaining hand-crafted image features,which influence the effect of hash code training with image features,at the same time these methods cannot deal well with semantic similarity for image data set.With the development of deep learning research on the large-scale data,some recent related work try to deploy deep neural network to learn hash function and make the hash code training effect increased.But such kind of methods require carefully designed complex neural network structure thus increase the difficulty of the hash function design and cost more time on neural network training with large data set.These problems limit the range of the hash algorithm application with the deep learning architecture for large data sets.To solve the problems mentioned above,this paper proposed a fast image hashing algorithm based on deep convolution neural network.The proposed algorithm consists of an optimization approach for constructing the hash code of the training data set and a pre-trained large deep neural network for learning to improve the effect of hash algorithm,shor-tening the training time of complex neural network.According to the analysis of experimental results on different image data sets,both the effectiveness of hash function and the efficiency of training time of the proposed algorithm have better performance compared with the existing algorithms.

Key words: Deep learning,Image retrieval,Image hashing,Neural network,Optimization algorithm

[1] Jégou H,Douze M,Schmid C,et al.Aggregating local descriptors into a compact image representation[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2010:3304-3311
[2] Charikar M S.Similarity estimation techniques from rounding algorithms[C]∥Proceedings of the Symposium on Theory of Computing.2002:380-388
[3] Xia R,Pan Y,Lai H,et al.Supervised Hashing for Image Retrieval via Image Representation Learning[C]∥Proceedings of AAAI Conference on Artificial Intelligence (AAAI).2014
[4] Gong Y,Lazebnik S.Iterative quantization:A procrustean approach to learning binary codes[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2011:817-824
[5] Wang Hui-feng,Sun Zheng-xing,Wang Jian.Semantic ImageRetrieval:Review And Research[J].Journal of Computer Research and Development,2002,9(5):513-523(in Chinese) 王惠锋,孙正兴,王箭.语义图像检索研究进展[J].计算机研究与发展,2002,39(5):513-523
[6] Wu Hong,Lu Han-qing,Ma Song-de.A Survey of RelevanceFeedback Techniques in Content-Based Image Retrieval[J].Chinese Journal of Computers,2005,8(12):1969-1979(in Chinese) 吴洪,卢汉清,马颂德.基于内容图像检索中相关反馈技术的回顾[J].计算机学报,2005,28(12):1969-1979
[7] Jegou H,Douze M,Schmid C.Hamming embedding and weak geometric consistency for large scale image search[C]∥Proceedings of the European Conference on Computer Vision.2008:304-317
[8] Gionis A,Indyk P,Motwani R.Similarity search in high dimensions via hashing[C]∥Proceedings of the International Confe-rence on Very Large Data Bases.1999,99:518-529
[9] Kleinberg J M.Two algorithms for nearest-neighbor search in high dimensions[C]∥Proceedings of the Symposium on Theory of Computing.New York:ACM Press,1997:599-608
[10] Kulis B,Grauman K.Kernelized locality-sensitive hashing[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(6):1092-1104
[11] Weiss Y,Torralba A,Fergus R.Spectral Hashing[J].Procee-dings of the Advances in Neural Information Processing Systems.2008,283(3):1753-1756
[12] Arya S,Mount D M,Netanyahu N S,et al.An optimal algorithm for approximate nearest neighbor searching fixed dimensions[J].Journal of the ACM,1998,45(6):891-923
[13] Lai H,Pan Y,Liu Y,et al.Simultaneous Feature Learning and Hash Coding with Deep Neural Networks[C]∥Proceedings of IEEE International Conference on Pattern Recognition and Computer Vision (CVPR).2015
[14] Clarkson K L.An algorithm for approximate closest-point queries[C]∥Proceedings of the Symposium on Computational Geo-metry.1994:160-164
[15] Wang J,Kumar S,Chang S F.Semi-supervised hashing for scalable image retrieval[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2010:3424-3431
[16] Chua T S,Tang J,Hong R,et al.NUS-WIDE:a real-world web image database from National University of Singapore[C]∥Proceedings of the ACM International Conference on Image and Video Retrieval.2009:1-9
[17] Bingham E,Mannila H.Random projection in dimensionality reduction:applications to Image and text data[C]∥Proceedings of the International Conference on Knowledge Discovery and Data Mining.2001:245-250
[18] Bentley J L.Multidimensional binary search trees used for associative searching[J].Commun ACM,1975,18(9):509-517
[19] Liu W,Wang J,Ji R,et al.Supervised hashing with kernels[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2012:2074-2081
[20] LeCun Y,Bottou L,Bengio Y,et al.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324
[21] Krizhevsky A,Sutskever I,Hinton G E.Imagenet classification with deep convolutional neural networks[C]∥Proceedings of Advances in Neural Information Processing Systems.2012:1106-1114
[22] Hinton G E,Srivastava N,Krizhevsky A,et al.Improving neural networks by preventing co-adaptation of feature detectors[J].arXiv preprint,arXiv:1207.0580,2012
[23] Fukushima K,Miyake S.Neocognitron:A new algorithm forpattern recognition tolerant of deformations and shifts in position[J].Pattern recognition,1982,15(6):455-469
[24] LeCun B B,Denker J S,Henderson D,et al.Handwritten digit recognition with a back-propagation network[C]∥Proceedings of Advances in Neural Information Processing Systems.1990
[25] LeCun Y,Boser B,Denker J S,et al.Backpropagation applied to handwritten zip code recognition[J].Neural Computation,1989,1(4):541-551
[26] Hubel D H,Wiesel T N.Receptive fields,binocular interaction and functional architecture in the cat’s visual cortex[J].The Journal of physiology,1962,160(1):106-154
[27] Lin G,Shen C,Suter D,et al.A general two-step approach tolearning-based hashing[C]∥Proceedings of the IEEE Confe-rence on Computer Vision and Pattern Recognition.2013
[28] Kulis B,Darrell T.Learning to Hash with Binary Reconstructive Embeddings[C]∥Proceedings of the Advances in Neural Information Processing Systems.2009,22:1042-1050
[29] Liu W,Wang J,Kumar S,et al.Hashing with graphs[C]∥Proceedings of the International Conference on Machine Learning.2011:1-8
[30] Norouzi M,Blei D M.Minimal loss hashing for compact binary codes[C]∥Proceedings of the International Conference on Machine Learning.2011:353-360
[31] Yu C N J,Joachims T.Learning structural svms with latent va-riables[C]∥Proceedings of the International Conference on Machine Learning.2009:1169-1176
[32] Ciaccia P,Patella M,Zezula P.M-tree:An Efficient AccessMethod for Similarity Search in Metric Spaces[C]∥Proceedings of the International Conference on Very Large Data Bases.1997
[33] Beygelzimer A,Kakade S,Langford J.Cover trees for nearest neighbor[C]∥Proceedings of the International Conference on Machine Learning.2006:97-104
[34] Uhlmann J K.Satisfying general proximity/similarity querieswith metric trees[J].Information Processing Letters,1991,40(4):175-179
[35] Krizhevsky A,Hinton G.Learning multiple layers of featuresfrom tiny images[D].University of Toronto,2009
[36] Oliva A,Torralba A.Modeling the shape of the scene:A holistic representation of the spatial envelope[J].International Journal of Computer Vision,2001,42(3):145-175
[37] Wang J,Yang J,Yu K,et al.Locality-constrained linear coding for image classification[C]∥Proceedings of the IEEE Confe-rence on Computer Vision and Pattern Recognition.2010:3360-3367
[38] Lowe D G.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110
[39] Csurka G,Dance C,Fan L,et al.Visual categorization with bags of keypoints[J].Proceedings of the European Conference on Computer Vision,2004,1(1-22):1-2
[40] Jia Y,Shelhamer E,Donahue J,et al.Caffe:Convolutional architecture for fast feature embedding.arXiv preprint,arXiv:1408.5093,2014
[41] Indyk P,Motwani R.Approximate nearest neighbors:towards removing the curse of dimensionality[C]∥Proceedings of the Symposium on Theory of Computing.1998:604-613
[42] Johnson W,Lindenstrauss J.Extensions of Lipschitz mappings into a Hilbert space[J].Contemporary Mathematics,1984,26:189-206

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!