Computer Science ›› 2017, Vol. 44 ›› Issue (9): 286-289.doi: 10.11896/j.issn.1002-137X.2017.09.053

Previous Articles     Next Articles

Diffusion Method of Sample Points for Alleviating Staggered Situation of Classification

LIANG Lu, GONG Ben-long, LI Jian and TENG Shao-hua   

  • Online:2018-11-13 Published:2018-11-13

Abstract: The fixed similarity measurement makes learner difficult to reveal the inherent statistical rules of the data itself with the priori information,and it is difficult to get good effect for the data set with a staggered classification.In order to improve the classification accuracy of the data set with a staggered classification,this paper combined the boundary and sample diffusion method.The method applies the statistical sample label information and position information to obtain boundary point,which is treated as the center.Then we selected appropriate control function to spread neighbo-ring sample points to make the classification more clear,so as to enhance the learning accuracy.Different classifiers are used to validate the method,and the accuracy of the proposed method is improved in different degrees.Compared with three classical supervised distance metric learning method,the experimental results show that this method is suitable for processing high degree of interleaving data sets,and can effectively improve the performance of SVM.

Key words: Distance metric learning,Sample point dispersion,Data preprocessing

[1] CHEN K Z,LE C P,ZHONG S P.Fusion Method of Distance Metric Learning and SVM for Image Matching[J].Journal of Chinese Computer Systems,2015,36(6):1353-1357.(in Chinese) 陈开志,乐承沛,钟尚平.融合距离度量学习和SVM的图像匹配算法[J].小型微型计算机系统,2015,36(6):1353-1357.
[2] CHOI S.Robust Learning From Demonstration Using Levera-ged Gaussian Processes and Sparse Constrained Opimization[C]∥IEEE Conference on Robotics and Automation.2016:470-475.
[3] YANG P,HUANG K,LIU C L.Geometry preserving multi-task metric learning[J].Machine Learning,2013,92(1):133-175.
[4] JIN R,WANG S,ZHOU Y.Regularized Distance Metric Lear-ning:Theory and Algorithm[C]∥Conference on Neural Information Processing Systems 2009.Vancouver,British Columbia,Canada,2009:862-870.
[5] XING E P,NG A Y,JORDAN M I,et al.Distance MetricLearning,With Application To Clustering With Side-Information[J].Advances in Neural Information Processing Systems,2003,15:505-512.
[6] WANG W.Global and Locality Incorporation in Distance Metric Learning[D].Hefei:University of Science and Technology of China,2014.(in Chinese) 王微.融合全局和局部信息的度量学习方法研究[D].合肥:中国科学技术大学,2014.
[7] WEINBERGER K Q,SAUL L K.Distance metric learning for large margin nearest neighbor classification[J].Journal of Machine Learning Research,2009,10:207-244
[8] HUA Y,JIE Y.A direct LDA algorithm for high-dimensional data-with application to face recognition[J].Pattern Recognition,2001,34(10):2067-2070.
[9] WANG P Y,CAI D F.Distance-based Kernel Evalution Measure[J].Computer Science,2014,41(2):72-75.(in Chinese) 王裴岩,蔡东风.一种基于核距离的核函数度量方法[J].计算机科学,2014,41(2):72-75.
[10] HE J R,DING L X,HU Q H,et al.Properties of High-dimensional Data Space and Metric Choice[J].Computer Science,2014,41(3):212-217.(in Chinese) 何进荣,丁立新,胡庆辉,等.高维数据空间的性质及度量选择[J].计算机科学,2014,41(3):212-217
[11] KEDEM D,TYREE S,WEINBERGER K,et al.Non-linearMetric Learning[J].Advances in Neural Information Processing Systems,2012,4:2582-2590.
[12] HE Y,CHEN W,CHEN Y,et al.Kernel Density Metric Lear-ning[C]∥2013 IEEE International Conference on Data Mining (ICDM).2013:271-280.
[13] JAIN P,KULIS B,DAVIS J V,et al.Metric and KernelLearning Using a Linear Transformation[J].Journal of Machine Learning Research,2009,13(1):519-547.
[14] LIANG L,LI J,HUO Y X,et al.A nonlinear normalization for non-uniformly distributed data[J].Computer Science,2016,43(4):264-269.(in Chinese) 梁路,黎剑,霍颖翔,等.一种非均匀分布数据的非线性标准化方法[J].计算机科学,2016,43(4):264-269.
[15] WAN H Y,ZUO J L,WAN J Y,et al.The KNN Text Classification Based on Sample Importance Principals[J].Journal of Jiangxi Normal University(Natural Science Edition),2015(3):297-303.(in Chinese) 万韩永,左家莉,万剑怡,等.基于样本重要性原理的KNN文本分类算法[J].江西师范大学学报(自然科学版),2015(3):297-303.
[16] Laurens van der Matten.http://lvdmaaten.github.io/dr-toolbox.
[17] SHEN Y Y,YAN Y,WANG H Z.Recent Advances on Supervised Distance Metric Learning Algorithms[J].Acta Automatica Sinica,2014,40(12):2673-2686.(in Chinese) 沈媛媛,严严,王菡子.有监督的距离度量学习算法研究进展[J].自动化学报,2014,40(12):2673-2686.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!