Computer Science ›› 2020, Vol. 47 ›› Issue (7): 231-235.doi: 10.11896/jsjkx.190600085
• Computer Network • Previous Articles Next Articles
JIANG Zong-li, LI Miao-miao, ZHANG Jin-li
CLC Number:
[1]TU C C,YANG C,LIU Z Y,et al.Network representation learning:an overview [J].Scientia Sinica Informations,2017,47(8):980-996. [2]SHEIKH N,KEFATO Z T,MONTRESOR A.Semi-Supervised Heterogeneous Information Network Embedding for Node Classification using 1D-CNN[C]//2018 Fifth International Confe-rence on Social Networks Analysis,Management and Security (SNAMS).IEEE,2018:177-181. [3]YIN Y,JI L X,HUANG R Y,et al.Research and development of network representation learning[J].Chinese Journal of Network and Information Security,2019,5(2):77-87. [4]JIANG Z L,ZHANG J L,DU Y P,et al.Hierarchical construction and node classification of heterogeneous network based on stacked denoising autoencoder[J].Journal of Beijing University of Technology,2018,44(9):1217-1226. [5]DONG Y,CHAWLA N V,SWAMI A.metapath2vec:Scalable representation learning for heterogeneous networks[C]//Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining.ACM,2017:135-144. [6]DEFFERRARD M,BRESSON X,VANDERGHEYNST P.Convolutional neural networks on graphs with fast localized spectral filtering[C]//Advances in neural information processing systems.2016:3844-3852. [7]KIPF T N,WELLING M.Semi-supervised classification withgraph convolutional networks[J].arXiv:1609.02907,2016. [8]ZHANG D,YIN J,ZHU X,et al.Network representation lear-ning:A survey[J].IEEE transactions on Big Data,2017,PP(99):1-1. [9]PEROZZI B,AlRFOU R,SKIENA S.Deepwalk:Online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining.ACM,2014:701-710. [10]MIKOLOV T,SUTSKEVER I,CHEN K,et al.Distributed representations of words and phrases and their compositionality[C]//Advances in neural information processing systems.2013:3111-3119. [11]MIKOLOV T,CHEN K,CORRADO G,et al.Efficient estimation of word representations in vector space[J].arXiv:1301.3781,2013. [12]TANG J,QU M,WANG M,et al.Line:Large-scale information network embedding[C]//Proceedings of the 24th international conference on world wide web.International World Wide Web Conferences Steering Committee,2015:1067-1077. [13]GROVER A,LESKOVEC J.node2vec:Scalable feature learning for networks[C]//Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining.ACM,2016:855-864. [14]LE C Y,BENGIO Y,HINTON G.Deep learning[J].Nature,2015,521(7553):436-444. [15]ZHANG J,JIANG Z,LI T.CHIN:Classification with META-PATH in Heterogeneous Information Networks[C]//International Conference on Applied Informatics.Springer,Cham,2018:63-74. [16]SHI C,LI Y,ZHANG J,et al.A survey of heterogeneous information network analysis[J].IEEE Transactions on Knowledge and Data Engineering,2016,29(1):17-37. [17]HUANG Z,ZHENG Y,CHENG R,et al.Meta structure:Computing relevance in large heterogeneous information networks[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.ACM,2016:1595-1604. [18]GUPTA M,KUMAR P,BHASKER B.A new relevance mea-sure for heterogeneous networks[C]//International Conference on Big Data Analytics and Knowledge Discovery.Cham:Sprin-ger,2015:165-177. [19]SEBASTIANI F.Machine learning in automated text categorization[J].ACM computing surveys (CSUR),2002,34(1):1-4. |
[1] | HUANG Li, ZHU Yan, LI Chun-ping. Author’s Academic Behavior Prediction Based on Heterogeneous Network Representation Learning [J]. Computer Science, 2022, 49(9): 76-82. |
[2] | LYU Xiao-feng, ZHAO Shu-liang, GAO Heng-da, WU Yong-liang, ZHANG Bao-qi. Short Texts Feautre Enrichment Method Based on Heterogeneous Information Network [J]. Computer Science, 2022, 49(9): 92-100. |
[3] | DU Hang-yuan, LI Duo, WANG Wen-jian. Method for Abnormal Users Detection Oriented to E-commerce Network [J]. Computer Science, 2022, 49(7): 170-178. |
[4] | ZHOU Hai-yu, ZHANG Dao-qiang. Multi-site Hyper-graph Convolutional Neural Networks and Application [J]. Computer Science, 2022, 49(3): 129-133. |
[5] | PAN Zhi-hao, ZENG Bi, LIAO Wen-xiong, WEI Peng-fei, WEN Song. Interactive Attention Graph Convolutional Networks for Aspect-based Sentiment Classification [J]. Computer Science, 2022, 49(3): 294-300. |
[6] | JIANG Zong-li, FAN Ke, ZHANG Jin-li. Generative Adversarial Network and Meta-path Based Heterogeneous Network Representation Learning [J]. Computer Science, 2022, 49(1): 133-139. |
[7] | ZHENG Su-su, GUAN Dong-hai, YUAN Wei-wei. Heterogeneous Information Network Embedding with Incomplete Multi-view Fusion [J]. Computer Science, 2021, 48(9): 68-76. |
[8] | ZHAO Jin-long, ZHAO Zhong-ying. Recommendation Algorithm Based on Heterogeneous Information Network Embedding and Attention Neural Network [J]. Computer Science, 2021, 48(8): 72-79. |
[9] | FU Kun, ZHAO Xiao-meng, FU Zi-tong, GAO Jin-hui, MA Hao-ran. Deep Network Representation Learning Method on Incomplete Information Networks [J]. Computer Science, 2021, 48(12): 212-218. |
[10] | PAN Yu, ZOU Jun-hua, WANG Shuai-hui, HU Gu-yu, PAN Zhi-song. Deep Community Detection Algorithm Based on Network Representation Learning [J]. Computer Science, 2021, 48(11A): 198-203. |
[11] | ZHAO Man, ZHAO Jia-kun, LIU Jin-nuo. Link Prediction Algorithm Based on Ego Networks Structure and Network Representation Learning [J]. Computer Science, 2021, 48(11A): 211-217. |
[12] | GAO Chuang, LI Jian-hua, JI Xiu-yi, ZHU Cheng-long, LI Shi-liang, LI Hong-lin. Drug Target Interaction Prediction Method Based on Graph Convolutional Neural Network [J]. Computer Science, 2021, 48(10): 127-134. |
[13] | DING Yu, WEI Hao, PAN Zhi-song, LIU Xin. Survey of Network Representation Learning [J]. Computer Science, 2020, 47(9): 52-59. |
[14] | LIU Jun-liang, LI Xiao-guang. Techniques for Recommendation System:A Survey [J]. Computer Science, 2020, 47(7): 47-55. |
[15] | HUANG Yi, SHEN Guo-wei, ZHAO Wen-bo, GUO Chun. Network Representation Learning Algorithm Based on Vulnerability Threat Schema [J]. Computer Science, 2020, 47(7): 292-298. |
|