Computer Science ›› 2021, Vol. 48 ›› Issue (7): 155-163.doi: 10.11896/jsjkx.200800072
• Database & Big Data & Data Science • Previous Articles Next Articles
WU Cheng-feng, CAI Li, LI Jin, LIANG Yu
CLC Number:
[1]MAO H H.Research on Person Trip Characteristics of Chinese Citizens [D].Beijing:Beijing University of Technology,2005. [2]FENG T.Visual Analysis of Resident Trip Mode Based on Taxi OD Data[D].Wuhan:Wuhan university,2017. [3]XIAO F,WANG Y,MEI Y N,et al.City Functional Region Discovery Algorithm Based on Travel Pattern Subgraph[J].Computer Science,2018,45(12):268-278. [4]CHU D,SHEETS D,ZHAO Y,et al.Visualizing HiddenThemes of Taxi Movement with Semantic Transformation[C]//IEEE Pacific Visualization Symposium.2014:137-144. [5]SUN G Z.Taxi Travel Demand Forecasting in Pick-up Hotspots Areas Based on GPS Trajectory Data[D].Beijing:Beijing Jiaotong University,2019. [6]KOSTOV V,OZAWA J,YOSHIOKA M,et al.Travel Destination Prediction Using Frequent Crossing Pattern from Driving History[C]//Intelligent Transportation Systems.IEEE,2005:364-368. [7]SAVAGE N S,NISHIMURA S,CHAVEA N E,et al.Frequent Trajectory Mining on GPS Data[C]//Proceedings of the Third International Workshop on Location & the Web.ACM,2010:3-7. [8]COMITO C,FALCONE D,TALIA D,et al.Mining HumanMobility Patterns from Social Geo-Tagged Data[J].Pervasive and Mobile Computing,2016,33:91-107. [9]YU W.Discovering Frequent Movement Paths from Taxi Tra-jectory Data Using Spatially Embedded Networks and Association Rules[J].IEEE Transactions on Intelligent Transportation Systems,2019,20(3):855-866. [10]NIU X Z,NIU J J,SU D Z,et al.FP-Tree-Based Approach for Frequent Trajectory Pattern Mining[J].Journal of University of Electronic Science and Technology,2016(1):86-90,134. [11]LEE I,CAI G,LEE K.Mining Points-of-Interest AssociationRules from Geo-tagged Photos[C]//Hawaii International Conference on System Sciences.IEEE,2013. [12]ZHENG Y,LIU Y,YUAN J,et al.Urban Computing withTaxicabs[C]//International Conference on Ubiquitous Computing.ACM,2011:89. [13]YAN X,HAN J.Discovery of Frequent Substructures[M]//Mining Graph Data.America:John Wiley & Sons,Inc.2006:97-115. [14]HAN W S,LEE J,LEE J H.TurboISO:Towards Ultrafast and Robust Subgraph Isomorphism Search in Large Graph Databases[C]//ACM Sigmod International Conference on Management of Data.ACM,2013:337-348. [15]YUAN N J,ZHENG Y,XIE X,et al.Discovering Urban Functional Zones Using Latent Activity Trajectories[J].IEEE Transactions on Knowledge and Data Engineering,2014,27(3):712-725. [16]LI X F,MA D W,ZHAN Y J,et al.the Research on Algorithm of Image’s Erosion and Dilation[J].Imaging Techniques,2005(1):37-39. [17]HAO Z B,HONG B R,HUANG Q C.Study of Coverage Path Planning Based on Grid-Map[J].Computer Application Research,2007,24(10):56-58. [18]CAI L.Fusion and Mining of MULTI-Source Location Data[D].Shanghai:Fudan university,2020. [19]BENTON A,DREDZE M.Deep Dirichlet Multinomial Regression[C]//Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.2018:365-374. [20]ULLMANN J R.An Algorithm for Subgraph Isomorphism [J].Journal of the ACM,1976,23(1):31-42. [21]WENQ L.Efficient Techniques for Subgraph Mining and Query Processing[D].Singapore:Nanyang Technological University,2015. [22]KURAMOCHI M,KARYPIS G.Finding Frequent Patterns in a Large Sparse Graph[J].Data Mining and Knowledge Discovery,2005,11(3):243-271. [23]ZHOU L L,YE N.Digraph Frequent Subgraph Mining Based on gSpan[J].Journal of Nanjing University (Natural Science edition),2011,47(5):532-543. [24]LEI K,HE W.Research on Software Defect Detection Method Based on Data Mining Technology[J].Electronic World,2012(15):112-114. [25]ELSEIDY M,ABDELHAMID E,SKIADOPOULOS S,et al.GRAMI:Frequent Subgraph and Pattern Mining in a Single Large Graph[J].Proceedings of the Vldb Endowment,2014,7(7):517-528. [26]YAN X,HAN J.Gspan:Graph-Based Substructure PatternMining[C]//2002 IEEE International Conference on Data Mi-ning,2002.IEEE,2002:721-724. [27]HUAN J,WANG W,PRINS J.Efficient Mining of FrequentSubgraphs in the Presence of Isomorphism[C]//Third IEEE International Conference on Data Mining.IEEE,2003:549-552. [28]YANG H G,SHEN D R,KOU Y,et al.Strongly Connected Components Based Efficient PPR Algorithms[J].Journal of Computer Science,2017,40(3):584-600. [29]LI X T,LI J Z,GAO H.An Efficient Frequent Subgraph Mining Algorithm[J].Journal of software,2007(10):107-118. |
[1] | LEI Dong, WANG Tao and MA Yun-fei. Frequent Pattern Mining in Bit Stream Based on AC Algorithm [J]. Computer Science, 2017, 44(1): 128-133. |
[2] | DING Jian, HAN Meng and LI Juan. Review of Concept Drift Data Streams Mining Techniques [J]. Computer Science, 2016, 43(12): 24-29. |
[3] | GAO Ang,YANG Yang,WANG Yue-wei. New Algorithm Research for Mining Workflow Frequent Pattern [J]. Computer Science, 2009, 36(9): 231-233. |
[4] | HE Hai-Tao, ZHANG Shi-Ling (College of Information Science and Engineering, Yanshan University, Qinhuangdao 066004). [J]. Computer Science, 2008, 35(3): 200-202. |
[5] | . [J]. Computer Science, 2006, 33(9): 76-80. |
|