Computer Science ›› 2023, Vol. 50 ›› Issue (11A): 221100180-7.doi: 10.11896/jsjkx.221100180
• Interdiscipline & Application • Previous Articles Next Articles
CHEN Bonian1,2, HAN Yutong1, HE Tao1,2, LIU Bin3, ZHANG Jianxin1,2
CLC Number:
[1]MENZE B H,JAKAB A,BAUER S,et al.The multimodal braintumor image segmentation benchmark(BRATS)[J].IEEE Transactions on Medical Imaging,2014,34(10):1993-2024. [2]BAUER S,WIEST R,NOLTE L P,et al.A survey of MRI-based medical image analysis for brain tumor studies[J].Physics in Medicine & Biology,2013,58(13):R97. [3]PEREIRA S,PINTO A,ALVES V,et al.Brain tumor segmen-tation using convolutional neural networks in MRI images[J].IEEE Transactions on Medical Imaging,2016,35(5):1240-1251. [4]LONG J,SHELHAMER E,DARRELL T.Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2015:3431-3440. [5]RONNEBERGER O,FISCHER P,BROX T.U-net:Convolu-tional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Compu-ter-Assisted Intervention.Cham:Springer,2015:234-241. [6]ÇICEK Ö,ABDULKADIR A,LIENKAMP S S,et al.3DU-Net:learning dense volumetric segmentation from sparse annotation[C]//International Conference on Medical Image Computing and Computer-assisted Intervention.Cham:Springer,2016:424-432. [7]LYU C,SHU H.A two-stage cascade model with variational autoencoders and attention gates for MRI brain tumor segmentation[C]//International MICCAI Brainlesion Workshop.Cham:Springer,2020:435-447. [8]LIU Z,TONG L,CHEN L,et al.CANet:Context aware network for brain glioma segmentation[J].IEEE Transactions on Medical Imaging,2021,40(7):1763-1777. [9]AKBAR A S,FATICHAH C,SUCIATI N.Single level UNet3D with multipath residual attention block for brain tumor segmentation[J].Journal of King Saud University-Computer and Information Sciences,2022. [10]ZHANG J,JIANG Z,LIU D,et al.3D asymmetric expectation-maximization attention network for brain tumor segmentation[J].NMR in Biomedicine,2022,35(5):e4657. [11]MYRONENKO A.3D MRI brain tumor segmentation usingautoencoder regularization[C]//International MICCAI Brainlesion Workshop.Cham:Springer,2018:311-320. [12]JIANG Z,DING C,LIU M,et al.Two-stage cascaded u-net:1st place solution to brats challenge 2019 segmentation task[C]//International MICCAI Brainlesion Workshop.Cham:Springer,2019:231-241. [13]BUATOIS T,PUYBAREAU É,TOCHON G,et al.Two stages CNN-based segmentation of gliomas,uncertainty quantification and prediction of overall patient survival[C]//International MICCAI Brainlesion Workshop.Cham:Springer,2019:167-178. [14]LI X,LUO G,WANG K.Multi-step cascaded networks forbrain tumor segmentation[C]//International MICCAI Brainlesion Workshop.Cham:Springer,2019:163-173. [15]LIU C,DING W,LI L,et al.Brain tumor segmentation network using attention-based fusion and spatial relationship constraint[C]//International MICCAI Brainlesion Workshop.Cham:Springer,2020:219-229. [16]YANG S,GUO D,WANG L,et al.Cascaded Coarse-to-FineNeural Network for Brain Tumor Segmentation[C]//International MICCAI Brainlesion Workshop.Cham,Springer:2020:458-469. [17]LI X,ZHONG Z,WU J,et al.Expectation-maximization attention networks for semantic segmentation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2019:9167-9176. [18]CHEN Y,DAI X,LIU M,et al.Dynamic convolution:Attention over convolution kernels[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:11030-11039. [19]HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:7132-7141. [20]BAKAS S,REYES M,JAKAB A,et al.Identifying the best machine learning algorithms for brain tumor segmentation,progression assessment,and overall survival prediction in the BRATS challenge[J].arXiv:1811.02629,2018. [21]ZHANG X Y,WANG B,AN W C,et al.Glioma Segmentation Network Based on 3DU-Net++ with Fusion Loss Function[J].Computer Science,2021,48(9):187-193. [22]XIA F,SHAO H,DENG X.Cross-stage deep-learning-basedMRI fused images of human brain tumor segmentation[J].Journal of Image and Graphics,2022,27(3):873-884. [23]WANG W,CHEN C,DING M,et al.Transbts:Multimodalbrain tumor segmentation using transformer[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention.Cham:Springer,2021:109-119. [24]JIANG Y,ZHANG Y,LIN X,et al.SwinBTS:A method for 3D multimodal brain tumor segmentation using swin transformer[J].Brain Sciences,2022,12(6):797. |
[1] | HAN Junling, LI Bo, KANG Xiaodong, YANG Jingyi, LIU Hanqing, WANG Xiaotian. Cardiac MRI Image Segmentation Based on Faster R-CNN and U-net [J]. Computer Science, 2023, 50(6A): 220600047-9. |
[2] | DAI Tianhong, SONG Jieqi. Multimodal MRI Brain Tumor Segmentation Based on Multi-encoder Architecture [J]. Computer Science, 2023, 50(6A): 220200108-6. |
[3] | BAI Xuefei, JIN Zhichao, WANG Wenjian, MA Yanan. Skin Lesion Segmentation Combining Boundary Enhancement and Multi-scale Attention [J]. Computer Science, 2023, 50(4): 96-102. |
[4] | BAI Xuefei, MA Yanan, WANG Wenjian. Segmentation Method of Edge-guided Breast Ultrasound Images Based on Feature Fusion [J]. Computer Science, 2023, 50(3): 199-207. |
[5] | SUN Fu-quan, CUI Zhi-qing, ZOU Peng, ZHANG Kun. Brain Tumor Segmentation Algorithm Based on Multi-scale Features [J]. Computer Science, 2022, 49(6A): 12-16. |
[6] | SHAO Yan-hua, LI Wen-feng, ZHANG Xiao-qiang, CHU Hong-yu, RAO Yun-bo, CHEN Lu. Aerial Violence Recognition Based on Spatial-Temporal Graph Convolutional Networks and Attention Model [J]. Computer Science, 2022, 49(6): 254-261. |
[7] | ZHAO Kai, AN Wei-chao, ZHANG Xiao-yu, WANG Bin, ZHANG Shan, XIANG Jie. Intracerebral Hemorrhage Image Segmentation and Classification Based on Multi-taskLearning of Shared Shallow Parameters [J]. Computer Science, 2022, 49(4): 203-208. |
[8] | GAO Xin-yue, TIAN Han-min. Droplet Segmentation Method Based on Improved U-Net Network [J]. Computer Science, 2022, 49(4): 227-232. |
[9] | HE Peng-hao, YU Ying, XU Chao-yue. Image Super-resolution Reconstruction Network Based on Dynamic Pyramid and Subspace Attention [J]. Computer Science, 2022, 49(11A): 210900202-8. |
[10] | HE Xiao-hui, QIU Fang-bing, CHENG Xi-jie, TIAN Zhi-hui, ZHOU Guang-sheng. High-resolution Image Building Target Detection Based on Edge Feature Fusion [J]. Computer Science, 2021, 48(9): 140-145. |
[11] | ZHANG Xiao-yu, WANG Bin, AN Wei-chao, YAN Ting, XIANG Jie. Glioma Segmentation Network Based on 3D U-Net++ with Fusion Loss Function [J]. Computer Science, 2021, 48(9): 187-193. |
[12] | QU Zhong, XIE Yi. Concrete Pavement Crack Detection Algorithm Based on Full U-net [J]. Computer Science, 2021, 48(4): 187-191. |
[13] | LI Hua-ji, CHENG Jiang-hua, LIU Tong, CHENG Bang, ZHAO Kang-cheng. Low-light Image Enhancement Method Based on U-net++ Network [J]. Computer Science, 2021, 48(11A): 278-282. |
[14] | WANG Xin, ZHANG Hao-yu, LING Cheng. Semantic Segmentation of SAR Remote Sensing Image Based on U-Net Optimization [J]. Computer Science, 2021, 48(11A): 376-381. |
[15] | PENG Lei, ZHANG Hui. U-net for Pavement Crack Detection [J]. Computer Science, 2021, 48(11A): 616-619. |
|