Computer Science ›› 2023, Vol. 50 ›› Issue (5): 277-291.doi: 10.11896/jsjkx.220300269

• Artificial Intelligence • Previous Articles     Next Articles

Binary Harris Hawk Optimization and Its Feature Selection Algorithm

SUN Lin, LI Mengmeng, XU Jiucheng   

  1. College of Computer and Information Engineering,Henan Normal University,Xinxiang,Henan 453007,China
    Engineering Lab of Intelligence Business and Internet of Things of Henan Province,Xinxiang,Henan 453007,China
  • Received:2022-03-29 Revised:2022-09-26 Online:2023-05-15 Published:2023-05-06
  • About author:SUN Lin,born in 1979,Ph.D,associate professor,master supervisor.His main research interests include granular computing,big data mining,machine lear-ning and bioinformatics.
  • Supported by:
    National Natural Science Foundation of China(62076089,61976082,62002103,61901160),Key Science and Technology Program of Henan Province,China(212102210136,222102210169) and Key Scientific Research Project of Henan Provincial Higher Education of China(22B520013).

Abstract: Harris Hawk optimization(HHO) algorithm only uses the random strategy to initialize the population in the exploration stage,which decreases the population diversity.The escape energy that controls the linear variation of the development and exploration process is prone to fall into local optimum in the later stage of iteration.To address the issues,this paper proposes a binary Harris Hawk optimization for metaheuristic feature selection algorithm.First,in the exploration phase,the Sine mapping function is introduced to initialize the population location of Harris Hawk,and the adaptive adjustment operator is used to change the search range of HHO and update the population location of HHO.Second,the updated formula of escape energy is improved by the logarithmic inertia weight,the number of iterations are introduced into the jump distance,and the step size adjustment parameter is employed to adjust the search distance of HHO to balance the exploration and development capabilities.On this basis,an improved HHO algorithm is designed to avoid the HHO algorithm falling into the local optimum.Third,the binary position and population position of the improved HHO algorithm are updated by the S-type and V-type transfer functions.Thus two binary improved HHO algorithms are designed.Finally,a fitness function is used to evaluate the feature subset,the binary improved HHO algorithm is combined with this fitness function,and then two binary improved HHO metaheuristic feature selection algorithms are developed.Experimental results on 10 benchmark functions and 17 public datasets show that the four optimization strategies effectively improve the optimization performance of the HHO algorithms on these benchmark functions,and the improved HHO algorithm is significantly better than other compared optimization algorithms.On 12 UCI datasets and 5 high-dimensional gene datasets,when compared with the BHHO-based feature selection algorithms and the other feature selection algorithms,the results demonstrate that the V-shape-based improved HHO feature selection algorithm has great optimization ability and classification performance.

Key words: Feature selection, Metaheuristic, Binary, Harris Hawk optimization, Fitness function

CLC Number: 

  • TP181
[1]SUN L,LI M M,DING W P,et al.AFNFS:Adaptive fuzzy neighborhood-based feature selection with adaptive synthetic over-sampling for imbalanced data[J].Information Sciences,2022,612:724-744.
[2]TENG J Y,GAO M,ZHENG X M,et al.Noise tolerable feature selection method for software defect prediction[J].Computer Science,2021,48(12):131-139.
[3]LIU Y,CHENG L,SUN L.Feature selection method based on K-S test and neighborhood rough sets[J].Journal of Henan Normal University(Natural Science Edition),2019,47(2):21-28.
[4]SUN L,HUANG M M,XU J C.Weak label feature selectionmethod based on neighborhood rough sets and relief[J].Computer Science,2022,49(4):152-160.
[5]RUAN Z H,XIAO X Y,HU W X,et al.Multiple power quality disturbance classification feature optimization based on multi-granularity feature selection and model fusion[J].Power System Protection and Control,2022,50(14):1-10.
[6]SUN L,YIN T Y,DING W P,et al.Feature selection with mis-sing labels using multilabel fuzzy neighborhood rough sets and maximum relevance minimum redundancy[J].IEEE Transactions on Fuzzy Systems,2022,30(5):1197-1211.
[7]LIU Q Z,HUANG C S.Optimization of dielectric responsecharacteristics of oil paper insulation based on FCBF feature selection and the XGBoost principle[J].Power System Protection and Control,2022,50(15):50-59.
[8]SUN L,ZHAO J,XU J C,et al.Feature selection method based on improved monarch butterfly optimization algorithm[J].Pattern Recognition and Artificial Intelligence,2020,33(11):981-994.
[9]DEHKORDI A A,SADIQ A S,MIRJALILI S,et al.Nonlinear-based chaotic harris hawks optimizer:algorithm and internet of vehicles application[J].Applied Soft Computing,2021,109:107574.
[10]QIAO B J,ZHANG J X,ZUO X Y.A heuristic independent taskscheduling algorithm based on task execution time[J].Journal of Henan Normal University(Natural Science Edition),2022,50(5):19-28.
[11]KANG Y,WANG H N,TAO L,et al.Hybrid improved flower pollination algorithm and gray wolf algorithm for feature selection[J].Computer Science,2022,49(S1):125-132.
[12]ZHANG L.Credit evaluation model of small and medium-sized enterprises based on HGA-SVM[J].Journal of Henan Normal University(Natural Science Edition),2022,50(2):79-85.
[13]YANG H Z,TIAN F M,ZHANG P,et al.Short-term load forecasting based on CEEMD-FE-AOA-LSSVM[J].Power System Protection and Control,2022,50(13):126-133.
[14]LI B X,WAN R Z,ZHU Y J,et al.Multi-strategy comprehensive article swarm optimization algorithm based on population partition[J].Journal of Henan Normal University(Natural Science Edition),2022,50(3):85-94.
[15]MIRJALILI S.The ant lion optimizer[J].Advances in Enginee-ring Software,2015,83:80-98.
[16]SUN L,WANG X Y,DING W P,et al.TSFNFR:Two-stage fuzzy neighborhood-based feature reduction with binary whale optimization algorithm for imbalanced data classification[J/OL].Knowledge-Based Systems,2022,109849.https://doi.org/10.1016/j.knosys.2022.109849.
[17]JI B,LU X Z,SUN G,et al.Bio-inspired feature selection:An improved binary particle swarm optimization approach[J].IEEE Access,2020,8:85989-86002.
[18]MAFARJA M,ALJARAH I,FARIS H,et al.Binary grasshopper optimisation algorithm approaches for feature selection problems[J].Expert Systems with Applications,2019,117:267-286.
[19]EMARY E,ZAWBAA H M,HASSANIEN A E.Binary grey wolf optimization approaches for feature selection[J].Neurocomputing,2016,172:371-381.
[20]HEIDARI A A,MIRJALILI S,FARIS H,et al.Harris hawks optimization:Algorithm and applications[J].Future Generation Computer Systems,2019,97:849-872.
[21]TANG A D,HAN T,XU D W,et al.Chaotic elite harris hawk optimization algorithm[J].Journal of Computer Applications,2021,41(8):2265-2272.
[22]THAHER T,HEIDARI A A,MAFARJA M,et al.Binary harris hawks optimizer for high-dimensional,low sample size feature selection[M]//Evolutionary Machine Learning Techniques.Algorithms for Intelligent Systems.Singapore:Springer,2020:251-272.
[23]ABDEL M,DING W,EL D.A hybrid harris hawks optimization algorithm with simulated annealing for feature selection[J].Artificial Intelligence Review,2021,54(1):593-637.
[24]HUSSAIN K,NEGGAZ N,ZHU W,et al.An efficient hybrid sine-cosine Harris Hawks optimization for low and high-dimensional feature selection[J].Expert Systems with Applications,2021,176:114778.
[25]YANG X S.Nature-inspired metaheuristic algorithms[M].Luniver Press,2010.
[26]BAN D H,LV X,WANG X Y.Efficient image encryption algorithm based on 1D chaotic map[J].Computer Science,2020,47(4):278-284.
[27]FANG J Y,JI Y S,ZHAO X C.Opposition-based differentialevolution algorithm with Gaussian distribution estimation[J].Journal of Henan Normal University(Natural Science Edition),2021,49(3):27-32.
[28]CHEN L,YIN J S.Whale Swarm Optimization Algorithm based on gaussian difference mutation and logarithmic inertia weight[J].Computer Engineering and Applications,2021,57(2):77-90.
[29]KENNEDY J,EBERHART R C.A discrete binary version of the particle swarm algorithm[C]//Proceedings of the 1997 IEEE International Conference on Systems,Man,and Cyberne-tics.Computational Cybernetics and Simulation,1997:4104-4108.
[30]HU P,PAN J S,CHU S C.Improved binary grey wolf optimizer and its application for feature selection[J].Knowledge-Based Systems,2020,195:105746.
[31]RASHEDI E,NEZAMABADI-POUR H,SARYAZDI S.BGSA:Binary gravitational search algorithm[J].Natural Computing,2010,9(3):727-745.
[32]THOM DE SOUZA R C,DE MACEDO C A,DOS SANTOSCOELHO L,et al.Binary coyote optimization algorithm for feature selection[J].Pattern Recognition,2020,107:107470.
[33]HASHIM F A,HOUSSEIN E H,MABROUK M S,et al.Henry gas solubility optimization:A novel physics-based algorithm[J].Future Generation Computer Systems,2019,101:646-667.
[34]FARAMARZI A,HEIDARINEJAD M,MIRJALILI S,et al.Marine predators algorithm:A nature-inspired metaheuristic[J].Expert Systems with Applications,2020,152:113377.
[35]SHAREEF H,IBRAHIM A A,MUTLAG A H.Lightningsearch algorithm[J].Applied Soft Computing Journal,2015,36:315-333.
[36]ABD ELAZIZ M,YANG H,LU S.A multi-leader harris hawk optimization based on differential evolution for feature selection and prediction influenza viruses H1N1[J].Artificial Intelligence Review,2022,55:2675-2732.
[37]LIU J J,WU C Z,CAO J,et al.A binary differential search algorithm for the 0-1 multidimensional knapsack problem[J].Applied Mathematical Modelling,2016,40(23/24):9788-9805.
[38]CHENG S,QIN Q D,CHEN J F,et al.Brain storm optimization algorithm:A review[J].Artificial Intelligence Review,2013,46(4):445-458.
[39]MIRJALILI S,MIRJALILI S M,LEWIS A.Grey wolf optimizer[J].Advances in Engineering Software,2014,69:46-61.
[40]MIRJALILI S.Dragonfly algorithm:A new meta-heuristic optimization technique for solving single-objective,discrete,and multi-objective problems[J].Neural Computing and Applications,2016,27:1053-1073.
[41]SUN L,WANG L Y,QIAN Y H,et al.Feature selection using Lebesgue and entropy measures for incomplete neighborhood decision systems[J].Knowledge-Based Systems,2019,186:104942.
[42]JIANG L X,ZHANG L G,LI C Q,et al.A correlation-based feature weighting filter for naive bayes[J].IEEE Transactions on Knowledge and Data Engineering,2019,31(2):201-213.
[43]XIONG X X,WANG W W.Kernelized correlation filteringmethod based onfast discriminative scale estimation[J].Journal of Computer Applications,2019,39(2):546-550.
[44]LI H L,MENG Z Q.Attribute reduction algorithm using information gain and inconsistency to fill[J].Computer Science,2018,45(10):217-224.
[45]XIE J Y,DING L J,WANG M Z.Spectral clustering based unsupervised feature selection algorithms[J].Journal of Software,2020,31(4):1009-1024.
[46]SUN L,ZHANG J X,DING W P,et al.Feature reduction for imbalanced data classification using similarity-based feature clustering with adaptive weighted k-nearest neighbors[J].Information Sciences,2022,593:591-613.
[47]SUN L,WANG T X,DING W P,et al.Two-stage-neighborhood-based multilabel classification for incomplete data with missing labels[J].International Journal of Intelligent Systems,2022,37:6773-6810.
[1] YANG Da, LUO Liang, ZHENG Long. New Global Optimization Algorithm:Carbon Cycle Algorithm [J]. Computer Science, 2023, 50(6A): 220300131-7.
[2] HUANG Yuhang, SONG You, WANG Baohui. Improved Forest Optimization Feature Selection Algorithm for Credit Evaluation [J]. Computer Science, 2023, 50(6A): 220600241-6.
[3] ZHAI Xulun, ZHANG Yongguang, JIN Anzhao, QIANG Wei, LI Mengbing. Parallel DVB-RCS2 Turbo Decoding on Multi-core CPU [J]. Computer Science, 2023, 50(6): 22-28.
[4] XU Tianjie, WANG Pingxin, YANG Xibei. Three-way k-means Clustering Based on Artificial Bee Colony [J]. Computer Science, 2023, 50(6): 116-121.
[5] YIN Xingzi, PENG Ningning, ZHAN Xueyan. Filtered Feature Selection Algorithm Based on Persistent Homology [J]. Computer Science, 2023, 50(6): 159-166.
[6] WANG Taiyan, PAN Zulie, YU Lu, SONG Jingbin. Binary Code Similarity Detection Method Based on Pre-training Assembly Instruction Representation [J]. Computer Science, 2023, 50(4): 288-297.
[7] LI Yanyan, QIN Keyun. Topological Properties of Generalized Rough Approximation Operators Based on Objects [J]. Computer Science, 2023, 50(2): 173-177.
[8] CHEN Yijun, GAO Haoran, DING Zhijun. Credit Evaluation Model Based on Dynamic Machine Learning [J]. Computer Science, 2023, 50(1): 59-68.
[9] CHENG Yong, MAO Yingchi, WAN Xu, WANG Longbao, ZHU Min. Chinese Event Detection Without Triggers Based on Dual Attention [J]. Computer Science, 2023, 50(1): 276-284.
[10] HU An-xiang, YIN Xiao-kang, ZHU Xiao-ya, LIU Sheng-li. Strcmp-like Function Identification Method Based on Data Flow Feature Matching [J]. Computer Science, 2022, 49(9): 326-332.
[11] LI Bin, WAN Yuan. Unsupervised Multi-view Feature Selection Based on Similarity Matrix Learning and Matrix Alignment [J]. Computer Science, 2022, 49(8): 86-96.
[12] HU Yan-yu, ZHAO Long, DONG Xiang-jun. Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification [J]. Computer Science, 2022, 49(7): 73-78.
[13] LIANG Yi-wen, DU Yu-song. Timing Attack Resilient Sampling Algorithms for Binary Gaussian Based on Knuth-Yao [J]. Computer Science, 2022, 49(6A): 485-489.
[14] KANG Yan, WANG Hai-ning, TAO Liu, YANG Hai-xiao, YANG Xue-kun, WANG Fei, LI Hao. Hybrid Improved Flower Pollination Algorithm and Gray Wolf Algorithm for Feature Selection [J]. Computer Science, 2022, 49(6A): 125-132.
[15] CHU An-qi, DING Zhi-jun. Application of Gray Wolf Optimization Algorithm on Synchronous Processing of Sample Equalization and Feature Selection in Credit Evaluation [J]. Computer Science, 2022, 49(4): 134-139.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!