Computer Science ›› 2023, Vol. 50 ›› Issue (5): 38-51.doi: 10.11896/jsjkx.220900030
• Explainable AI • Previous Articles Next Articles
LI Binghui, FANG Huan, MEI Zhenhui
CLC Number:
[1]WICKRAMANAYAKE B,HE Z,OUYANG C,et al.Building interpretable models for business process prediction using shared and specialised attention mechanisms[J].Knowledge-Based Systems,2022,248:108773. [2]MOON J,PARK G,JEONG J.Pop-on:Prediction of processusing one-way language model based on nlp approach[J].Applied Sciences,2021,11(2):864. [3]BATINI C,CAPPIELLO C,FRANCALANCI C,et al.Metho-dologies for data quality assessment and improvement[J].ACM Computing Surveys(CSUR),2009,41(3):1-52. [4]NGUYEN H T C,LEE S,KIM J,et al.Autoencoders for improving quality of process event logs[J].Expert Systems with Applications,2019,131:132-147. [5]BOSE R P J C,MANS R S,VAN DER AALST W M P.Wanna improve process mining results?[C]//2013 IEEE Symposium on Computational Intelligence and Data Mining(CIDM).IEEE,2013:127-134. [6]SARZYNSKA-WAWER J,WAWER A,PAWLAK A,et al.Detecting formal thought disorder by deep contextualized word representations[J].Psychiatry Research,2021,304:114135. [7]RADFORD A,NARASIMHAN K,SALIMANS T,et al.Improving language understanding by generative pre-training[EB/OL].(2018-12-30)[2022-07-15].https://www.cs.ubc.ca/~amuham01/LING530/papers/radfod2018improving.pdf. [8]DEVLIN J,CHANG M W,LEE K,et al.Bert:Pre-training ofdeep bidirectional transformers for language understanding[J].arXiv:1810.04805,2018. [9]VAN DER AALST W M P,DE MEDEIROS A K A.Process mining and security:Detecting anomalous process executions and checking process conformance[J].Electronic Notes in Theo-retical Computer Science,2005,121:3-21. [10]GHIONNA L,GRECO G,GUZZO A,et al.Outlier detectiontechniques for process mining applications[C]//International Symposium on Methodologies for Intelligent Systems.Springer,2008:150-159. [11]FANISANIM,ZELST S J,VAN DER AALST W M P.Repairing outlier behaviour in event logs[C]//International Confe-rence on Business Information Systems.Springer,2018:115-131. [12]ROGGE-SOLTIA,MANS R S,VAN DER AALST W M P,et al.Improving documentation by repairing event logs[C]//IFIP Working Conference on the Practice of Enterprise Modeling.Heidelberg,Springer,2013:129-144. [13]WANG J,SONG S,ZHU X,et al.Efficient recovery of missing events[J].Proceedings of the VLDB Endowment,2013,6(10):841-852. [14]WANG J,SONG S,LIN X,et al.Cleaning structured eventlogs:A graph repair approach[C]//2015 IEEE 31st International Conference on Data Engineering.IEEE,2015:30-41. [15]CHINCES D,SALOMIE I.Optimizing spaghetti process models[C]//2015 20th International Conference on Control Systems and Computer Science.IEEE,2015:506-511. [16]LIU J,XU J,ZHANG R,et al.A repairing missing activities approach with succession relation for event logs[J].Knowledge and Information Systems,2021,63(2):477-495. [17]SURIADI S,ANDREWS R,TER HOFSTEDE A H M,et al.Event log imperfection patterns for process mining:Towards a systematic approach to cleaning event logs[J].Information Systems,2017,64:132-150. [18]NOLLE T,LUETTGEN S,SEELIGER A,et al.Analyzing busi-ness process anomalies using autoencoders[J].Machine Lear-ning,2018,107(11):1875-1893. [19]NGUYEN H T C,COMUZZI M.Event log reconstruction using autoencoders[C]//International Conference on Service-Oriented Computing.Springer,2018:335-350. [20]VASWANI A,SHAZEER N,PARMAR N,et al.Attention isall you need[C]//Advances in Neural Information Processing Systems.2017:5998-6008. [21]VAN DER A A H,REBMANN A,LEOPOLD H.Natural language-based detection of semantic execution anomalies in event logs[J].Information Systems,2021,102:101824. [22]RIZZI W,DI FRANCESCOMARINO C,MAGGI F M.Explaina-bility in predictive process monitoring:when understanding helps improving[C]//International Conference on Business Process Management.Springer,2020:141-158. [23]GALANTI R,COMA-PUIG B,DE LEONI M,et al.Explainable predictive process monitoring[C]//2020 2nd International Conference on Process Mining(ICPM).IEEE,2020:1-8. [24]WEIDLICH M,MENDLING J,WESKE M.Efficient consistency measurement based on behavioral profiles of process models[J].IEEE Transactions on Software Engineering,2010,37(3):410-429. [25]FANG H,JIN P P,FANG X W,et al.Process variants cluster mining method based on causal behavioral profiles[J].Compu-ter Integrated Manufacturing System,2020,26(6):1538-1547. [26]FANG H,FANG X W,WANG L L.Review of Reliability Ana-lysis Based on Petri Nets[J].Computer Science,2014,41(7):40-44. [27]FANG H,SUN S Y,FANG X W.Behavior change mining me-thods based on incomplete logs conjoint occurrence relation[J].Computer Integrated Manufacturing System,2020,26(7):1887-1895. |
[1] | ZHANG Shunyao, LI Huawang, ZHANG Yonghe, WANG Xinyu, DING Guopeng. Image Retrieval Based on Independent Attention Mechanism [J]. Computer Science, 2023, 50(6A): 220300092-6. |
[2] | LIU Haowei, YAO Jingchi, LIU Bo, BI Xiuli, XIAO Bin. Two-stage Method for Restoration of Heritage Images Based on Muti-scale Attention Mechanism [J]. Computer Science, 2023, 50(6A): 220600129-8. |
[3] | LI Fan, JIA Dongli, YAO Yumin, TU Jun. Graph Neural Network Few Shot Image Classification Network Based on Residual and Self-attention Mechanism [J]. Computer Science, 2023, 50(6A): 220500104-5. |
[4] | SUN Kaiwei, WANG Zhihao, LIU Hu, RAN Xue. Maximum Overlap Single Target Tracking Algorithm Based on Attention Mechanism [J]. Computer Science, 2023, 50(6A): 220400023-5. |
[5] | WU Liuchen, ZHANG Hui, LIU Jiaxuan, ZHAO Chenyang. Defect Detection of Transmission Line Bolt Based on Region Attention Mechanism andMulti-scale Feature Fusion [J]. Computer Science, 2023, 50(6A): 220200096-7. |
[6] | ZHANG Shuaiyu, PENG Li, DAI Feifei. Person Re-identification Method Based on Progressive Attention Pyramid [J]. Computer Science, 2023, 50(6A): 220200084-8. |
[7] | LUO Huilan, LONG Jun, LIANG Miaomiao. Attentional Feature Fusion Approach for Siamese Network Based Object Tracking [J]. Computer Science, 2023, 50(6A): 220300237-9. |
[8] | DOU Zhi, HU Chenguang, LIANG Jingyi, ZHENG Liming, LIU Guoqi. Lightweight Target Detection Algorithm Based on Improved Yolov4-tiny [J]. Computer Science, 2023, 50(6A): 220700006-7. |
[9] | ZENG Zehua, LUO Huilan. Cross-dataset Learning Combining Multi-object Tracking and Human Pose Estimation [J]. Computer Science, 2023, 50(6A): 220400199-7. |
[10] | DAI Tianhong, SONG Jieqi. Multimodal MRI Brain Tumor Segmentation Based on Multi-encoder Architecture [J]. Computer Science, 2023, 50(6A): 220200108-6. |
[11] | ZHANG Guohua, YAN Xuefeng, GUAN Donghai. Anomaly Detection of Time-series Based on Multi-modal Feature Fusion [J]. Computer Science, 2023, 50(6A): 220700094-7. |
[12] | LIU Jiansong, KANG Yan, LI Hao, WANG Tao, WANG Hailing. Spatial-Temporal Graph-CoordAttention Network for Traffic Forecasting [J]. Computer Science, 2023, 50(6A): 220200042-7. |
[13] | MENG Xiangfu, XU Ruihang. City Traffic Flow Prediction Method Based on Dynamic Spatio-Temporal Neural Network [J]. Computer Science, 2023, 50(6A): 220600266-7. |
[14] | GAO Xiang, TANG Jiqiang, ZHU Junwu, LIANG Mingxuan, LI Yang. Study on Named Entity Recognition Method Based on Knowledge Graph Enhancement [J]. Computer Science, 2023, 50(6A): 220700153-6. |
[15] | ZHANG Tao, CHENG Yifei, SUN Xinxu. Graph Attention Networks Based on Causal Inference [J]. Computer Science, 2023, 50(6A): 220600230-9. |
|