Computer Science ›› 2024, Vol. 51 ›› Issue (8): 371-378.doi: 10.11896/jsjkx.230700189
• Information Security • Previous Articles Next Articles
WANG Xuxian1,2, HUANG Jinhua1,2, ZHAI You3, LI Chu’nan4, WANG Yu3, ZHANG Yupeng4, ZHANG Yipeng5, YANG Liqun4, LI Zhoujun3
CLC Number:
[1]ANTONAKAKIS M,APRIL T,BAILEY M,et al.Understan-ding the mirai botnet [C]//Proceedings of the 26th USENIX security symposium(USENIX Security 17).2017:1093-1110. [2]SIGLER K.Crypto-jacking:how cyber-criminals are exploitingthe crypto-currency boom [J].Computer Fraud & Security,2018,2018(9):12-14. [3]TEAM S R.Emotet exposed:looking inside highly destructive malware [J].Network Security,2019,2019(6):6-11. [4]KESSEM L.The Necurs Botnet:A pandora’s box of malicious spam [EB/OL].https://securityintelligence.com/the-necurs-botnet-a-pandoras-box-of-malicious-spam/. [5]HOLZ T,GORECKI C,RIECK K,et al.Measuring and detecting fast-flux service networks [C]//Proceedings of the Network and Distributed System Security Symposium(NDSS).2008. [6]SOOD A K,ZEADALLY S.A taxonomy of domain-generation algorithms [J].IEEE Security & Privacy,2016,14(4):46-53. [7]SAEED A M H,WANG D,ALNEDHARI H A M,et al.A Survey of Machine Learning and Deep Learning Based DGA Detection Techniques [C]//Proceedings of the Smart Computing and Communication-6th International Conference(SmartCom).2021:133-143. [8]WANG Y,WANG Z,PAN R.Survey of DGA Domain NameDetection Based on Character Feature [J].Computer Science,2023,50(8):251-259. [9]PLOHMANN D,YAKDAN K,KLATT M,et al.A comprehensive measurement study of domain generating malware [C]//Proceedings of the 25th USENIX Security Symposium(USENIX Security 16).2016:263-278. [10]RAHIM A.cryptolocker-dga [EB/OL].https://github.com/azrilrahim/cryptolocker-dga. [11]CHIU A,VILLEGAS A.Threat Spotlight:Dyre/Dyreza:AnAnalysis to Discover the DGA [EB/OL].https://blogs.cisco.com/security/talos/threat-spotlight-dyre. [12]GEFFNER J.End-to-end analysis of a domain generating algorithm malware family [C]//Proceedings of the Black Hat USA.2013. [13]BAUMGARTNER K,RAIU C.Sinkholing Volatile Cedar DGA Infrastructure [EB/OL].https://securelist.com/sinkholing-volatile-cedar-dga-infrastructure/69421/. [14]ZAGO M,PÉREZ M G,PÉREZ G M.UMUDGA:A dataset for profiling DGA-based botnet [J].Computers & Security,2020,92:101719. [15]POCHAT V L,GOETHEM T V,TAJALIZADEHKHOOB S,et al.Tranco:A Research-Oriented Top Sites Ranking Hardened Against Manipulation [C]//Proceedings of the Annual Network and Distributed System Security Symposium San Diego.2019. [16]XIE Q,TANG S,ZHENG X,et al.Building an Open,Robust,and Stable Voting-Based Domain Top List [C]//Proceedings of the USENIX Security Symposium.Boston,2022:625-642. [17]WOODBRIDGE J,ANDERSON H S,AHUJA A,et al.Predicting domain generation algorithms with long short-term memory networks [J].arXiv:161100791,2016. [18]TRAN D,MAC H,TONG V,et al.A LSTM based framework for handling multiclass imbalance in DGA botnet detection [J].Neurocomputing,2018,275:2401-2413. [19]ZHOU S,LIN L,YUAN J,et al.Cnn-based dga detection with high coverage [C]//Proceedings of the 2019 IEEE International Conference on Intelligence and Security Informatics(ISI).2019:62-67. [20]VRANKEN H,ALIZADEH H.Detection of DGA-GeneratedDomain Names with TF-IDF [J].Electronics,2022,11(3):414. [21]SCHÜPPEN S,TEUBERT D,HERRMANN P,et al.{FAN-CI}:Feature-based Automated {NXDomain} Classification and Intelligence [C]//Proceedings of the 27th USENIX Security Symposium(USENIX Security 18).2018:1165-1181. [22]SHAHZAD H,SATTAR A R,SKANDARANIYAM J.DGADomain Detection using Deep Learning [C]//Proceedings of the 5th IEEE International Conference on Cryptography,Security and Privacy.Zhuhai,2021:139-143. [23]DAVUTH N,KIM S R.Classification of malicious domainnames using support vector machine and bi-gram method [J].International Journal of Security and Its Applications,2013,7(1):51-58. [24]SIVAGURU R,CHOUDHARY C,YU B,et al.An Evaluation of DGA Classifiers [C]//Proceedings of the IEEE International Conference on Big Data Seattle.2018:5058-5067. [25]BILGE L,KIRDA E,KRUEGEL C,et al.Exposure:Findingmalicious domains using passive DNS analysis [C]//Procee-dings of the Ndss.2011:1-17. [26]ANTONAKAKIS M,PERDISCI R,NADJI Y,et al.From{Throw-Away} Traffic to Bots:Detecting the Rise of {DGA-Based} Malware [C]//Proceedings of the 21st USENIX Security Symposium(USENIX Security 12).2012:491-506. [27]LIU Z,YUN X,ZHANG Y,et al.CCGA:Clustering and Capturing Group Activities for DGA-Based Botnets Detection [C]//Proceedings of the 2019 18th IEEE International Conference on Trust,Security and Privacy in Computing And Communications/13th IEEE International Conference on Big Data Science and Engineering.Rotorua,2019:136-143. [28]POCHAT V L,HAMME T V,MAROOFI S,et al.A Practical Approach for Taking Down Avalanche Botnets Under Real-World Constraints [C]//Proceedings of the Annual Network and Distributed System Security Symposium(NDSS).San Diego,2020. [29]LECUN Y,BOTTOU L,BENGIO Y,et al.Gradient-basedlearning applied to document recognition [J].Proceedings of the IEEE,1998,86(11):2278-2324. [30]ELMAN J L.Finding structure in time [J].Cognitive Science,1990,14(2):179-211. [31]LU Y,MAO Z,QIU Z.Review of Development and Applications of Blockchain Technology in the Field of Energy Internet of Things [J].Guangdong Electric Power,2021,34(7):1-21. [32]WU J,LIANG L,JI X,et al.Infrared Image Fault Detection Method for Insulator Based on YOLOv3 Algorithm [J].Guangdong Electric Power,2019,33(9):77-84. [33]XU C,SHEN J,DU X.Detection method of domain names ge-nerated by DGAs based on semantic representation and deep neural network [J].Computers & Security,2019,85:77-88. [34]SHAHZAD H,SATTAR A R,SKANDARANIYAM J.DGADomain Detection using Deep Learning [C]//Proceedings of the 5th IEEE International Conference on Cryptography,Security and Privacy(CSP).2021:139-143. [35]BO L,CHONG X,SHAOJIE C,et al.Fast-Flux Malicious Domain Name Detection Method Based on Multimodal Feature Fusion [J].Netinfo Security,2022,22(4):20-29. [36]SIVAGURU R,PECK J,OLUMOFIN F G,et al.Inline Detection of DGA Domains Using Side Information [J].IEEE Access,2020,8:141910-141922. [37]CHEN Y,ZHANG S,LIU J,et al.Towards a deep learning approach for detecting malicious domains [C]//Proceedings of the 2018 IEEE International Conference on Smart Cloud(SmartCloud).2018:190-195. [38]VINAYAKUMAR R,SOMAN K,POORNACHANDRAN P,et al.DBD:Deep learning DGA-based botnet detection [J/OL].https://link.springer.com/chapter/10.1007/978-3-030-13057-2_6. [39]HIGHNAM K,PUZIO D,LUO S,et al.Real-Time Detection of Dictionary DGA Network Traffic Using Deep Learning [J].SN Computer Science,2021,2(2):110. [40]REN F,JIANG Z,WANG X,et al.A DGA domain names detection modeling method based on integrating an attention mechanism and deep neural network [J].Cybersecur,2020,3(1):4. [41]TUAN T A,LONG H V,TANIAR D.On Detecting and Classifying DGA Botnets and their Families [J].Computers & Security,2022,113:102549. [42]LIANG J,CHEN S,WEI Z,et al.HAGDetector:Heterogeneous DGA domain name detection model [J].Computers & Security,2022,120:102803. [43]CURTIN R R,GARDNER A B,GRZONKOWSKI S,et al.Detecting DGA domains with recurrent neural networks and side information [C]//Proceedings of the 14th International Confe-rence on Availability,Reliability and Security.2019:1-10. [44]VINAYAKUMAR R,ALAZAB M,SRINIVASAN S,et al.AVisualized Botnet Detection System Based Deep Learning for the Internet of Things Networks of Smart Cities [J].IEEE Tran-sactions on Industry Applications,2020,56(4):4436-4456. [45]NAMGUNG J,SON S,MOON Y S.Efficient Deep LearningModels for DGA Domain Detection [J].Secur Commun Networks,2021,2021:8887881-8887815. [46]SUN X,TONG M,YANG J,et al.{HinDom}:A Robust Malicious Domain Detection System based on Heterogeneous Information Network with Transductive Classification [C]//Proceedings of the 22nd International Symposium on Research in Attacks,Intrusions and Defenses(RAID 2019).2019:399-412. [47]FANG X,SUN X,YANG J,et al.Domain-Embeddings Based DGA Detection with Incremental Training Method [C]//Proceedings of the IEEE Symposium on Computers and Communications(ISCC).Rennes,2020:1-6. [48]PECK J,NIE C,SIVAGURU R,et al.CharBot:A simple and effective method for evading DGA classifiers [J].IEEE Access,2019,7:91759-91771. [49]YUN X,HUANG J,WANG Y,et al.Khaos:An adversarialneural network DGA with high anti-detection ability [J].IEEE Transactions on Information Forensics and Security,2019,15:2225-2240. [50]CARLINI N,WAGNER D A.Towards Evaluating the Robustness of Neural Networks [C]//Proceedings of the IEEE Symposium on Security and Privacy.San Jose,2017:39-57. [51]PAPERNOT N,MCDANIEL P D,GOODFELLOW I J,et al.Practical Black-Box Attacks against Machine Learning [C]//Proceedings of the the 2017 ACM on Asia Conference on Computer and Communications Security.Abu Dhabi,2017:506-519. [52]HUANG H,MU J,GONG N Z,et al.Data Poisoning Attacks to Deep Learning Based Recommender Systems [C]//Proceedings of the 28th Annual Network and Distributed System Security Symposium.2021. [53]ZHAO Z,CHEN X,XUAN Y,et al.DEFEAT:Deep Hidden Feature Backdoor Attacks by Imperceptible Perturbation and Latent Representation Constraints [C]//Proceedings of the the IEEE/CVF Conference on Computer Vision and Pattern Recognition.New Orleans,2022:15213-15222. [54]GU T,DOLAN-GAVITT B,GARG S.Badnets:Identifying vulnerabilities in the machine learning model supply chain [J].ar-Xiv:170806733,2017. [55]ZHAI Y,YANG L,YANG J,et al.BadDGA:Backdoor Attack on LSTM-Based Domain Generation Algorithm Detector [J].Electronics,2023,12(3):736. |
[1] | CHEN Liang, LI Zhihua. Abnormal Traffic Detection Method for Multi-stage Attacks of Internet of Things Botnets [J]. Computer Science, 2024, 51(8): 379-386. |
[2] | SUN Haidong, LIU Wanping, HUANG Dong. DGA Domain Name Detection Method Based on Similarity [J]. Computer Science, 2023, 50(6A): 220400122-6. |
[3] | LI Xiaodong, SONG Yuanfeng, LI Yuqiang. Domain-Flux Botnet Detection Method with Fusion of Character and Word Dual-channel [J]. Computer Science, 2023, 50(12): 337-342. |
[4] | ZHANG Xi-ran, LIU Wan-ping, LONG Hua. Dynamic Model and Analysis of Spreading of Botnet Viruses over Internet of Things [J]. Computer Science, 2022, 49(6A): 738-743. |
[5] | HU Peng-cheng, DIAO Li-li, YE Hua, YANG Yan-lan. DGA Domains Detection Based on Artificial and Depth Features [J]. Computer Science, 2020, 47(9): 311-317. |
[6] | PEI Lan-zhen, ZHAO Ying-jun, WANG Zhe, LUO Yun-qian. Comparison of DGA Domain Detection Models Using Deep Learning [J]. Computer Science, 2019, 46(5): 111-115. |
[7] | NIU Wei-na, ZHANG Xiao-song, YANG Guo-wu, ZHUO Zhong-liu, LU Jia-zhong. Modeling and Analysis of Botnet with Heterogeneous Infection Rate [J]. Computer Science, 2018, 45(7): 135-138. |
[8] | SONG Yuan-zhang. P2P Botnet Detection Based on Permutation Entropy and Multi-sensor Data Fusion on Decision Level [J]. Computer Science, 2016, 43(7): 141-146. |
[9] | CHEN Lian-dong, ZHANG Lei, QU Wu and KONG Ming. Distributed Real-time Botnet Detection Algorithm [J]. Computer Science, 2016, 43(3): 127-136. |
[10] | SHAO Xiu-li,GENG Mei-jie and JIANG Hong-ling. Realization of Bayesian Algorithm for Detecting Botnets Based on MapReduce [J]. Computer Science, 2014, 41(3): 153-158. |
[11] | ZHANG Yong-bin,LU Yin and ZHANG Yan-ning. Malware Domains Detection by Monitoring Group Activities [J]. Computer Science, 2013, 40(8): 146-148. |
[12] | . Botnet Propagation Model with Variable Infection Rate [J]. Computer Science, 2012, 39(11): 51-53. |
[13] | . Botnet Propagation Model with Two-factor on Scale-free Network [J]. Computer Science, 2012, 39(10): 78-81. |
[14] | HUANG Biao,TAN Liang. New Botnet Propagation Model with Inununity [J]. Computer Science, 2011, 38(Z10): 72-75. |
[15] | . [J]. Computer Science, 2009, 36(6): 101-104. |
|