Computer Science ›› 2025, Vol. 52 ›› Issue (11A): 241100014-13.doi: 10.11896/jsjkx.241100014
• Image Processing & Multimedia Technology • Previous Articles Next Articles
XU Bei1,2, ZHAO Dan1
CLC Number:
| [1]FERREIRA L N,WHITEHEAD J.Learning to generate music with sentiment[J].arXiv:2103.06125,2021. [2]KOH E,DUBNOV S.Comparison and analysis of deep audio embeddings for music emotion recognition[J].arXiv:2104.06517,2021. [3]AGRES K R,SCHAEFER R S,VOLKA,et al.Music,computing,and health:a roadmap for the current and future roles of music technology for health care and well-being[J].Music & Science,2021,4:2059204321997709. [4]ELLIOTT D,POLMAN R,MCGREGOR R.Relaxing music for anxiety control[J].Journal of Music Therapy,2011,48(3):264-288. [5]STEWART J,GARRIDO S,HENSE C,et al.Music use formood regulation:Self-awareness and conscious listening choices in young people with tendencies to depression[J].Frontiers in Psychology,2019,10:1199. [6]CLEMENTS-CORTÉSA.The use of music in facilitating emotional expression in the terminally ill[J].American Journal of Hospice and Palliative Medicine©,2004,21(4):255-260. [7]FUJIOKA T,WEEN J E,JAMALI S,et al.Changes in neuro-magnetic beta-band oscillation after music-supported stroke rehabilitation[J].Annals of the New York Academy of Sciences,2012,1252(1):294-304. [8]GORINI A,CAPIDEVILLE C S,DE L,et al.The role of immersion and narrative in mediated presence:the virtual hospital experience[J].Cyberpsychology,Behavior,and Social Networking,2011,14(3):99-105. [9]KANTOSALO A,TOIVONEN H.Modes for creative human-computer collaboration:Alternating and task-divided co-creativity[C]//Proceedings of the Seventh International Conference on Computational Creativity.Paris:ICCC Press,2016:77-84. [10]MICCHI G,BIGO L,GIRAUDM,et al.I Keep Counting:An experiment in human/AI co-creative songwriting[J].Transactions of the International Society for Music Information Retrieval(TISMIR),2021,4(1):263-275. [11]MADHOK R,GOEL S,GARG S.SentiMozart:Music Generation based on Emotions[C]//ICAART(2).Portugal:SciTEPress,2018:501-506. [12]MA L,ZHONG W,MA X,et al.Learning to generate emotional music correlated with music structure features[J].Cognitive Computation and Systems,2022,4(2):100-107. [13]BENGIO Y,SIMARD P,FRASCONI P.Learning long-term dependencies with gradient descent is difficult[J].IEEE Transactions on Neural Networks,1994,5(2):157-166. [14]VIJAYAKUMAR A K,COGSWELL M,SELVARAJU R R,et al.Diverse beam search:Decoding diverse solutions from neural sequence models[J].arXiv:1610.02424,2016. [15]KINGMA D P,WELLING M.Auto-encoding variationalbayes[J].arXiv:1312.6114,2013. [16]GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Gene-rative adversarial networks[J].Communications of the ACM,2020,63(11):139-144. [17]ROBERTS A,ENGEL J,RAFFEL C,et al.A hierarchical latent vector model for learning long-term structure in music[C]//International Conference on Machine Learning.Stockholm:PMLR,2018:4364-4373. [18]SOHN K,LEE H,YAN X.Learning structured output repre-sentation using deep conditional generative models[J].Advances in Neural Information Processing Systems,2015,28:1935. [19]GREKOW J,DIMITROVA-GREKOW T.Monophonic musicgeneration with a given emotion using conditional variationalautoencoder[J].IEEE Access,2021,9:129088-129101. [20]DAHMANI S,COLOTTE V,GIRARD V,et al.Learning emotions latent representation with CVAE for text-driven expressive audiovisual speech synthesis[J].Neural Networks,2021,141:315-329. [21]DONG H W,HSIAO W Y,YANG L C,et al.Musegan:Multi-track sequential generative adversarial networks for symbolic music generation and accompaniment[C]//Proceedings of the AAAI Conference on Artificial Intelligence.New Orleans:AAAI Press,2018:34-41. [22]MIRZA M,OSINDERO S.Conditional generative adversarial-nets[J].arXiv:1411.1784,2014. [23]ARJOVSKY M,CHINTALA S,BOTTOU L,Wasserstein GAN[J].arXiv:1701.07875,2017. [24]GULRAJANI I,AHMED F,ARJOVSKY M,et al.Improvedtraining ofwasserstein gans[C]//Advances in Neural Information Processing Systems.2017:5769-5779. [25]BAO J,CHEN D,WEN F,et al.CVAE-GAN:fine-grained image generation through asymmetric training[C]//Proceedings of the IEEE International Conference on Computer Vision.Venice:IEEE Press,2017:2745-2754. [26]GOMEZ P,DANUSER B.Relationships between musical structure and psychophysiological measures of emotion[J].Emotion,2007,7(2):377-387. [27]CHOWDHURY S,VALL A,HAUNSCHMID V,et al.To-wards explainable music emotion recognition:The route via mid-levelfeatures[J].arXiv:1907.03572,2019. [28]EKMAN P.Are there basic emotions?[J].Psychological Review,1992,99(3):550-553. [29]PLUTCHIK R.The nature of emotions:Human emotions have deep evolutionary roots,a fact that may explain their complexity and provide tools for clinical practice[J].American Scientist,2001,89(4):344-350. [30]HEVNER K.Experimental studies of the elements of expression inmusic[J].The American Journal of Psychology,1936,48(2):246-268. [31]CHELKOWSKA-ZACHAREWICZ M,JANOWSKI M.Polishadaptation of the Geneva Emotional Music Scale:Factor structure andreliability[J].Psychology of Music,2021,49(5):1117-1131. [32]THAYER R E.The biopsychology of mood andarousal[M].Oxford:Oxford University Press,1990. [33]RUSSELL J A.A circumplex model ofaffect[J].Journal of Personality and Social Psychology,1980,39(6):1161. [34]MEHRABIAN A.Silent messages:implicit communication of emotions andattitudes[M].Belmont:Wadsworth Pub,1981. [35]FRIBERG A,SCHOONDERWALDT E,HEDBLAD A,et al.Using listener-based perceptual features as intermediate representations in music information retrieval[J].The Journal of the Acoustical Society of America,2014,136(4):1951-1963. [36]ALJANAKI A,SOLEYMANI M.A data-driven approach tomid-level perceptual musical feature modeling[C]//Proceedings of the 19th International Society for Music Information Retrieval Conference(ISMIR).2018:615-621. [37]MCKINNEY M,BREEBAART J.Features for audio and music classification[C]//Proceedings of the International Conference on Music Information Retrieval.Plymouth MA,2004:151-158. [38]PANDA R,MALHEIRO R,PAIVA R P.Novel audio features for music emotionrecognition[J].IEEE Transactions on Affective Computing,2018,11(4):614-626. [39]PANDA R,MALHEIRO R,PAIVA R P.Audio features formusic emotion recognition:asurvey[J].IEEE Transactions on Affective Computing,2020,14(1):68-88. [40]KHURANA A,MITTAL S,KUMAR D,et al.Tri-integrated convolutional neural network for audio image classification using Mel-frequency spectrograms[J].Multimedia Tools and Applications,2023,82(4):5521-5546. [41]ALI S,NAZ B,NAREJO S,et al.Alex Net-Based Speech Emotion Recognition Using 3D Mel-Spectrograms[J].International Journal of Innovations in Science and Technology,2024,6(2):426-433. [42]LIANG X,WU J,YIN Y.MIDI-Sandwich:Multi-model Multi-task Hierarchical Conditional VAE-GAN networks for Symbolic Single-track MusicGeneration[J].Australian Journal of Intelligent Information Processing Systems,2019,15(2):1-9. [43]HUANG C F,HUANG C Y.Emotion-based AI music generation system with CVAE-GAN[C]//2020 IEEE Eurasia Confe-rence on IOT,Communication and Engineering(ECICE).Taiwan:IEEE Press,2020:220-222. [44]HUANG C F,HUANG C Y.CVAE-GAN Emotional AI Music System for Car DrivingSafety[J].Intelligent Automation & Soft Computing,2022,32(3):1939-1953. [45]KOSSALE Y,AIRAJ M,DAROUICHI A.Mode collapse ingenerative adversarial networks:An overview[C]//InternationalConference on Optimization and Applications(ICOA).IEEE Press,2022:1-6. [46]FASSMEYER P,KORTMANN F,DREWS P,et al.Towards a Camera-Based Road Damage Assessment and Detection for Autonomous Vehicles:Applying Scaled-YOLO and CVAE-WGAN[C]//2021 IEEE 94th Vehicular Technology Conference(VTC2021-Fall).IEEE,2021:1-7. [47]YONEKURA K,TOMORI Y,SUZUKI K.Airfoil Shape Generation and Feature Extraction Using the Conditional VAE-WGAN-gp[J].AI,2024,5(4):2092-2103. [48]KUMAR N,KUMAR R,BHATTACHARYA S.Testing reliability ofMirtoolbox[C]//International Conference on Electronics and Communication Systems(ICECS).India:IEEE Press,2015:710-717. [49]LIU Z,LIN Y,CAO Y,et al.Swin transformer:Hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.California:IEEE Press,2021:10012-10022. [50]EEROLA T,VUOSKOSKI J K.A comparison of the discreteand dimensional models of emotion inmusic[J].Psychology of Music,2011,39(1):18-49. [51]LI Y,FU R,MENG X,et al.A SAR-to-optical image translation method based on conditional generation adversarial network(cGAN)[J].IEEE Access,2020,8:60338-60343. [52]NEVES P,FORNARI J,FLORINDO J.Generating music with sentiment using Transformer-GANs[J].arXiv:2212.11134,2022. [53]MADHAVI K R,CHALIVENDRA V,VASANTHA C L,et al.Music Recommendation and Generation Based on Face Emotion Detection[C]//2024 7th International Conference on Circuit Power and Computing Technologies(ICCPCT).IEEE,2024:1205-1210. |
| [1] | LIU Jiasen, HUANG Jun. Center Point Target Detection Algorithm Based on Improved Swin Transformer [J]. Computer Science, 2024, 51(6): 264-271. |
| [2] | ZHU Wentao, LIU Wei, LIANG Shangsong, ZHU Huaijie, YIN Jian. Variational Continuous Bayesian Meta-learning Based Algorithm for Recommendation [J]. Computer Science, 2023, 50(7): 66-71. |
| [3] | BAI Zhengyao, FAN Shenglan, LU Qianjie, ZHOU Xue. COVID-19 Instance Segmentation and Classification Network Based on CT Image Semantics [J]. Computer Science, 2023, 50(6A): 220600142-9. |
| [4] | SUN Kaixin, LIU Bin, SU Shuguang. Medical Microscopic Image Segmentation Model Based on CNN Structure and Swin Transformer [J]. Computer Science, 2023, 50(11A): 230200119-8. |
| [5] | ZHANG Hui. Fault Localization Technology Based on Program Mutation and Gaussian Mixture Model [J]. Computer Science, 2021, 48(6A): 572-574. |
| [6] | ZOU Cheng-ming, CHEN De. Unsupervised Anomaly Detection Method for High-dimensional Big Data Analysis [J]. Computer Science, 2021, 48(2): 121-127. |
| [7] | WANG Wei-dong, XU Jin-hui, ZHANG Zhi-feng, YANG Xi-bei. Gaussian Mixture Models Algorithm Based on Density Peaks Clustering [J]. Computer Science, 2021, 48(10): 191-196. |
| [8] | WANG Yan, LUO Qian, DENG Hui. Bearing Fault Diagnosis Method Based on Variational Bayes [J]. Computer Science, 2019, 46(11): 323-327. |
| [9] | CHAI Wu-yi, YANG Feng, YUAN Shao-feng, HUANG Jing. Multi-class Gaussian Mixture Model and Neighborhood Information BasedGaussian Mixture Model for Image Segmentation [J]. Computer Science, 2018, 45(11): 272-277. |
| [10] | CHENG Ying-chao, WANG Rui-hu and HU Zhang-ping. Novel Approach on Collaborative Filtering Based on Gaussian Mixture Model [J]. Computer Science, 2017, 44(Z6): 451-454. |
| [11] | ZHANG Yi-hao, LIU Zhi and ZHU Chang-peng. Chinese Word Sense Induction Model by Integrating Distance Metric and Gaussian Mixture Model [J]. Computer Science, 2017, 44(8): 265-269. |
| [12] | LI Rui and SHENG Chao. Mixed Gaussian Target Detection Algorithm Based on Entropy and Related Close Degree [J]. Computer Science, 2017, 44(12): 304-309. |
| [13] | ZHOU Hong-yu, YANG Yang and ZHANG Su. Non-rigid Point Set Registration Algorithm Based on Iteration [J]. Computer Science, 2016, 43(Z6): 226-231. |
| [14] | JIA Xu, SUN Fu-ming, CAO Yu-dong, CUI Jian-jiang and XUE Ding-yu. Dorsal Hand Vein Recognition Algorithm Based on Effective Dimensional Feature [J]. Computer Science, 2016, 43(1): 315-319. |
| [15] | SHENG Jia-chuan and YANG Wei. Research on Moving Objects Detection in Video Sequences Based on Grabcut-guassian Mixture Model [J]. Computer Science, 2015, 42(Z11): 199-202. |
|
||