Computer Science ›› 2025, Vol. 52 ›› Issue (11A): 241100156-8.doi: 10.11896/jsjkx.241100156
• Big Data & Data Science • Previous Articles Next Articles
LI Yi1, WANG Tongxin2, PANG Bozhong1
CLC Number:
| [1]WEN Y Z,WANG Y,YI K,et al.Diffimpute:Tabular data imputation with denoising diffusion probabilistic model[C]//2024 IEEE International Conference on Multimedia and Expo(ICME).IEEE,2024. [2]MCKNIGHT P E,MCKNIGHT K M,SIDANI S,et al.Missing Data:A Gentle Introduction [M].New York: Guilford Press,2007. [3]GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Ge-nerative adversarial networks[J].Communications of the ACM,2020,63(11):139-144. [4]ZHAO Z L,KUNAR A,BIRKE R,et al.CTAB-GAN:Effective Table Data Synthesizing [C]//Asian Conference on Machine Learning.PMLR,2021:97-112. [5]AWAN S E,BENNAMOUN M,SOHEL F,et al.Imputation of missing data with class imbalance using conditional generative adversarialnetworks[J].Neurocomputing,2021,453:164-171. [6]SU J,YU H.Missing data imputation algorithm with dual discriminators based on conditional generative adversarial imputation network [J].Journal of Computer Applications,2024,44(5):1423-1427. [7]TRAN L,LIU X,ZHOU J,et al.Missing modalities imputation via cascaded residual autoencoder[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE,2017:4971-4980. [8]HO J,AJAY J,PIETER A.Denoising diffusion probabilisticmodels [C]//Proceedings of the 34th International Conference on Neural Information Processing Systems.New York:ACM,2020:6840-6851. [9]GONDARA L,WANG K.MIDA:Multiple Imputation UsingDenoising Autoencoders [C]//Pacific-Asia Conference on Knowledge Discovery and Data Mining.Cham:Springer International Publishing,2018:260-272. [10]CHEN Z,LI H,WANG F,et al.Rethinking the diffusion models for numerical tabular data imputation from the perspective of wasserstein gradient flow[J].arXiv:2406.15762,2024. [11]KOTELNIKOV A,BARANCHUK D,RUBACHEV I,et al.Tabddpm:Modelling tabular data with diffusion models[C]//International Conference on Machine Learning.PMLR,2023:17564-17579. [12]SUNDARARAJAN M,NAJMI A.The many SHAPlEY values for model explanation[C]//International Conference on Machine Learning.PMLR,2020:9269-9278. [13]VAN BUUREN S.Flexible Imputation of Missing Data [M].Boca Raton:CRC Press,2012. [14]LI S C X,JIANG B,MARLIN B.Misgan:Learning from incomplete data with generative adversarial networks[J].arXiv:1902.09599,2019. [15]YOON S,SULL S.GAMIN:Generative Adversarial MultipleImputation Network for Highly Missing Data [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Seattle:IEEE,2020:8456-8464. [16]NELOY A A,TURGEON M.A comprehensive study of auto-encoders for anomaly detection:Efficiency and trade-offs[J].Machine Learning with Applications,2024:100572. [17]FANG F,BAO S.FragmGAN:Generative Adversarial Nets for Fragmentary Data Imputation and Prediction [J].Statistical Theory and Related Fields,2023,8(1):1-14. [18]YOON J,JORDON J,SCHAAR M.GAIN:Missing Data Imputation Using Generative Adversarial Nets [C]//International Conference on Machine Learning.PMLR,2018. [19]WANG Y,XU X,HU L,et al.A Time Series Continuous Missing Values Imputation Method Based on Generative Adversarial Networks [J].Knowledge-Based Systems,2024,283:111215. [20]ZHENG S,CHAROENPHAKDEE N.Diffusion models formissing value imputation in tabular data[J].arXiv:2210.17128,2022. [21]CHEN H,COVERT I C,LUNDBERG S M,et al.Algorithms toEstimate Shapley Value Feature Attributions [J].Nature Machine Intelligence,2023,5(6):590-601. [22]JADHAV A,PRAMOD D,RAMANATHAN K.Comparison of Performance of Data Imputation Methods for Numeric Dataset [J].Applied Artificial Intelligence,2019,33(10):913-933. |
| [1] | ZHANG Yuechao, AN Guocheng, SUN Chenkai. Prediction of Short-and-Medium Term Photovoltaic Power Generation Based on Improved ModernTCN [J]. Computer Science, 2025, 52(11A): 241000164-7. |
| [2] | HUANG Kun, SUN Weiwei. Traffic Speed Forecasting Algorithm Based on Missing Data [J]. Computer Science, 2024, 51(3): 72-80. |
| [3] | CAI Qiquan, LU Juhong, YU Zhiyong, HUANG Fangwan. Data Completion of Air Quality Index Based on Multi-dimensional Sparse Representation [J]. Computer Science, 2023, 50(8): 52-57. |
| [4] | LI Pei-guan, YU Zhi-yong, HUANG Fang-wan. Power Load Data Completion Based on Sparse Representation [J]. Computer Science, 2021, 48(2): 128-133. |
| [5] | ZHANG Wang-ce, FAN Jing, WANG Bo-ru and NI Min. (α,k)-anonymized Model for Missing Data [J]. Computer Science, 2020, 47(6A): 395-399. |
| [6] | SONG Xiao-xiang,GUO Yan,LI Ning,YU Dong-ping. Missing Data Prediction Algorithm Based on Sparse Bayesian Learning in Coevolving Time Series [J]. Computer Science, 2019, 46(7): 217-223. |
| [7] | SONG Xiao-xiang, GUO Yan, LI Ning, WANG Meng. Missing Data Prediction Based on Compressive Sensing in Time Series [J]. Computer Science, 2019, 46(6): 35-40. |
| [8] | FAN Zhe-ning, YANG Qiu-hui, ZHAI Yu-peng, WAN Ying, WANG Shuai. Improved ROUSTIDA Algorithm for Missing Data Imputation with Key Attribute in Repetitive Data [J]. Computer Science, 2019, 46(2): 30-34. |
| [9] | WANG Feng WEI Wei. Group Feature Selection Algorithm for Data Sets with Missing Data [J]. Computer Science, 2015, 42(7): 285-290. |
| [10] | . Utility Allocation Strategy for Virtualized Resource Based on Cooperative Game [J]. Computer Science, 2012, 39(6): 51-53. |
| [11] | PENG Hong-Yi, ZHU Si-Ming, JIANG Chun-Fu (Department of Mathematics, Sun Yat-sen University, Guangahou 510275). [J]. Computer Science, 2005, 32(12): 203-205. |
|
||