Computer Science ›› 2025, Vol. 52 ›› Issue (11A): 241100173-9.doi: 10.11896/jsjkx.241100173
• Information Security • Previous Articles Next Articles
HAN Luchao1, ZHANG Wei2
CLC Number:
| [1]MANÈS V J M,HAN H S,HAN C,et al.The art,science,and engineering of fuzzing:A survey[J].IEEE Transactions on Software Engineering,2019,47(11):2312-2331. [2]XU W,LI P,ZHANG W B,et al.Survey of network protocolfuzzing [J].Application Research of Computers,2023,40 (8):2241-2249. [3]GODEFROID P.Fuzzing:Hack,art,and science[J].Communications of the ACM,2020,63(2):70-76. [4]REN Z,ZHENG H,ZHANG J,et al.A Review of FuzzingTechniques[J].Journal of Computer Research and Development,2021,58(5):944. [5]LIANG H,PEI X,JIA X,et al.Fuzzing:State of the art[J].IEEE Transactions on Reliability,2018,67(3):1199-1218. [6]BOEHME M,CADAR C,ROYCHOUDHURY A.Fuzzing:Challenges and Reflections[J].IEEE Software,2021,38(3):79-86. [7]ECEIZA M,FLORES J L,ITURBE M.Fuzzing the Internet of Things:A Review on the Techniques and Challenges for Efficient Vulnerability Discovery in Embedded Systems[J].IEEE Internet of Things Journal,2021,8(13):10390-10411. [8]田一嵋.智能汽车网络漏洞检测技术的研究与实现[D].成都:电子科技大学,2019. [9]SPIKEFuzzer Platform[EB/OL].(2022-02-12).http://www.immunitysec.com. [10]Peach Fuzzer Platform[EB/OL].(2022-02-12).http://www.peachfuzzer.com/products/peach-platform/. [11]Sulley:A pure-python fully automated and unattended fuzzing framework[EB/OL].(2021-01-23).https://www.github.com/OpenRCE/sulley. [12]ZHANG H Z,HONG Z,ZHOU S L,et al.Fuzzing Optimization Method Based on Protocol State Migration Traversal[J].Computer Engineering and Applications,2020,56(4):82-91. [13]LI Y H,HONG Z,LIN P H.Fuzzing Test Case GenerationMethod Based on Depth-first Search[J].Computer Science,2021,48(12):85-93. [14]LI J L,CHEN Y L,LI Z,et al.Mining RTSP Protocol Vulnerabilities Based on Traversal of Protocol State Graph[J].ComputerScience,2018,45(9):171-176. [15]AICHERNIG B K,MUKARDIN E,PFERSCHER A.Learning-based fuzzing of IoT message brokers[C]//14th IEEE Conference on Software Testing,Verification and Validation.2021:47-58. [16]FITERAU-BROSTEAN P,JONSSON B,MERGET R,et al.Analysis of DTLS Implementations Using Protocol State Fuzzing[C]//29th USENIX Security Symposium.2020:2523-2540. [17]YU Y,CHEN Z,GAN S,et al.SGPFuzzer:A state-driven smart graybox protocol fuzzer for network protocol implementations[J].IEEE Access,2020,8:198668-198678. [18]PHAM V T,BÖHME M,ROYCHOUDHURY A.AFLnet:agreybox fuzzer for network protocols[C]//IEEE 13th International Conference on Software Testing,Validation and Verification.2020:460-465. [19]BLUMBERGS B,VAARANDI R.Bbuzz:A bit-aware fuzzingframework for network protocol systematic reverse engineering and analysis[C]//IEEE Military Communications Conference.2017:707-712. [20]LUO J Z,SHAN C,CAI J,et al.IoT Application-Layer Protocol Vulnerability Detection using Reverse Engineering[J].Symmetry,2018,10(11):561. [21]FENG X,SUN R,ZHU X,et al.Snipuzz:Black-box fuzzing of IoT firmware via message snippet inference[C]//ACM SIGSAC Conference on Computer and Communications Security.2021:337-350. [22]HE H H,WANG Y J.PNFUZZ:A stateful network protocolfuzzing approach based on packet clustering [J].Computer Science & Information Technology,2020:61-69. [23]FAN R,CHANG Y.Machine learning for black-box fuzzing of network protocols[C]//International Conference on Information and Communications Security.2017:621-632. [24]GAO Z,DONG W,CHANG R,et al.The Stacked Seq2seq-attention Model for Protocol Fuzzing[C]//IEEE 7th International Conference on Computer Science and Network Technology.2019:126-130. [25]ZHAO H,LI Z,WEI H,et al.SeqFuzzer:An industrial protocol fuzzing framework from a deep learning perspective[C]//12th IEEE Conference on software testing,validation and verification.2019:59-67. [26]LV W,XIONG J,SHI J,et al.A deep convolution generative adversarial networks based fuzzing framework for industry control protocols[J].Journal of Intelligent Manufacturing,2021,32(2):441-457. [27]JERO S,PACHECO M L,GOLDWASSER D,et al.Leveraging textual specifications for grammar-based fuzzing of network protocols[C]//The AAAI Conference on Artificial Intelligence.2019:9478-9483. [28]HU Z H,PAN Z L.Testcase Filtering Method Based on QRNN for Network Protocol Fuzzing[J].Computer Science,2022,49(5):318-324. [29]LIU X,CUI B,FU J,et al.HFuzz:Towards automatic fuzzing testing of NB-IoT core network protocols implementations[J].Future Generation Computer Systems,2020,108:390-400. [30]SONG C,YU B,ZHOU X,et al.SPFuzz:a hierarchical scheduling framework for stateful network protocol fuzzing[J].IEEE Access,2019,7:18490-18499. [31]LI M,HE L,TENG Y X,et al.Research on network protocol vulnerability discovery based on fuzz testing[C]//IEEE 2nd Information Technology,Networking,Electronic and Automation Control Conference.2017:1354-1358. [32]LUO Z,ZUO F,JIANG Y,et al.Polar:Function code aware fuzz testing of ics protocol[J].ACM Transactions on Embedded Computing Systems,2019,18(5s):1-22. [33]REDINI N,CONTINELLA A,DAS D,et al.DIANE:identifying fuzzing triggers in Apps to generate under-constrained inputs for IoT devices[C]//IEEE Symposium on Security and Privacy.2021:484-500. [34]GASCON H,WRESSNEGGER C,YAMAGUCHI F,et al.Pulsar:Stateful black-box fuzzing of proprietary network protocols[C]//International Conference on Security and Privacy in Communication Systems,2015:330-347. [35]LIN P Y,TIEN C W,HUANG T C,et al.ICPFuzzer:proprietary communication protocol fuzzing by using machine learning and feedback strategies[J].Cybersecurity,2021,4(1):1-15. [36]NATELLA R.StateAFL:Greybox Fuzzing for Stateful Net-work Servers[J].Empirical Software Engineering,2022,27(7):191. [37]PETERSON A,JERO S,HOQUE E,et al.aBBRate:Automating BBR Attack Exploration Using a Model-Based Approach[C]//International Symposium on Research in Attacks,Intrusions and Defenses.2020:225-240. [38]YU B,WANG P,YUE T,et al.Poster:Fuzzing IoT firmware via multi-stage message generation[C]//ACM SIGSAC Confe-rence on Computer and Communications Security.2019:2525-2527. [39]ZHENG Y,DAVANIAN A,YIN H,et al.FIRM-AFL:High-Throughput Greybox Fuzzing of IoT Firmware via Augmented Process Emulation[C]//2019 USENIX Security Symposium.2019:1099-1114. [40]KIM J,YU J,KIM H,et al.FIRM-COV:high-coverage greybox fuzzing for IoT firmware via optimized process emulation[J].IEEE Access,2021,9:101627-101642. [41]MAIER D,SEIDEL L,PARK S.Basesafe:Baseband sanitizedfuzzing through emulation[C]//13th ACM Conference on Security and Privacy in Wireless and Mobile Networks.2020:122-132. [42]LUO Z,ZUO F,SHEN Y,et al.ICS protocol fuzzing:Coverage guided packet crack and generation[C]//57th ACM/IEEE Design Automation Conference.2020:1-6. [43]ALSHMRANY K,CORDEIRO L.Finding security vulnerabilities in network protocol implementations[J].arXiv:2001.09592,2020. [44]ZOU Y H,BAI J J,ZHOU J,et al.TCP-Fuzz:Detecting Memory and Semantic Bugs in TCP Stacks with Fuzzing[C]//2021 USENIX Annual Technical Conference.2021:489-502. [45]MOUKAHAL L J,ZULKERNINE M,SOUKUP M.Vulnera-bility-Oriented Fuzz Testing for Connected Autonomous Vehicle Systems[J].IEEE Transactions on Reliability,2021,70(4):1422-1437. [46]WEN S,MENG Q,FENG C,et al.Protocol vulnerability detection based on network traffic analysis and binary reverse engineering[J].PloS One,2017,12(10):e0186188. [47]KIM S J,CHO J,LEE C,et al.Smart seed selection-based effective black box fuzzing for IoT protocol[J].The Journal of Supercomputing,2020,76(12):10140-10154. [48]GAO Z,DONG W,CHANG R,et al.Fw-fuzz:A code coverage-guided fuzzing framework for network protocols on firmware[J].Concurrency and Computation:Practice and Experience,2022,34(16):1-15. [49]SANISLAV F S.Development of fuzzing methodologies for testing the resilience of the SATA protocol[D].Politecnico di Torino,2020. [50]CASTEUR G,AUBARET A,BLONDEAU B,et al.Fuzzing attacks for vulnerability discovery within MQTT protocol[C]//International Wireless Communications and Mobile Computing.2020:420-425. [51]YU J Z,LUO Z X,XIAF S Y,et al.SPFuzz:Stateful Path based Parallel Fuzzing for Protocols in Autonomous Vehicles[C]//Proceedings of the 61st ACM/IEEE Design Automation Confe-rence(DAC’24).Association for Computing Machinery,New York,NY,USA,2024:1-6. [52]SEREBRYANY K.OSS-Fuzz:Google’s continuous fuzzingservice for open source software[EB/OL].(2021-11-09).https://github.com/google/oss-fuzz/. |
| [1] | ZHOU Tao, DU Yongping, XIE Runfeng, HAN Honggui. Vulnerability Detection Method Based on Deep Fusion of Multi-dimensional Features from Heterogeneous Contract Graphs [J]. Computer Science, 2025, 52(9): 368-375. |
| [2] | SUN Qiming, HOU Gang, JIN Wenjie, HUANG Chen, KONG Weiqiang. Survey on Fuzzing of Embedded Software [J]. Computer Science, 2025, 52(7): 13-25. |
| [3] | BAO Shenghong, YAO Youjian, LI Xiaoya, CHEN Wen. Integrated PU Learning Method PUEVD and Its Application in Software Source CodeVulnerability Detection [J]. Computer Science, 2025, 52(6A): 241100144-9. |
| [4] | SHI Heyuan, CHEN Shijun, ZHANG Qiang, SHEN Yuheng, JIANG Yu, SHI Ronghua. Configuration-guided Directed Kernel Fuzzing for Real-time Linux [J]. Computer Science, 2025, 52(6A): 240400161-8. |
| [5] | ZHANG Xuming, SHI Yaqing, HUANG Song, WANG Xingya, HU Jinchang, LU Jiangtao. Survey of Open-source Software Component Vulnerability Detection and Automatic RepairTechnology [J]. Computer Science, 2025, 52(6): 1-20. |
| [6] | XIAO Ziqin, SHI Yaqing, QU Yubin. Research on Optimization of Test Case Generation Based on Neuron Coverage Index [J]. Computer Science, 2025, 52(11): 339-348. |
| [7] | REN Jiadong, LI Shangyang, REN Rong, ZHANG Bing, WANG Qian. Web Access Control Vulnerability Detection Approach Based on Site Maps [J]. Computer Science, 2024, 51(9): 416-424. |
| [8] | SHAO Wenxin, YANG Zhibin, LI Wei, ZHOU Yong. Natural Language Requirements Based Approach for Automatic Test Cases Generation of SCADE Models [J]. Computer Science, 2024, 51(7): 29-39. |
| [9] | WANG Shuanqi, ZHAO Jianxin, LIU Chi, WU Wei, LIU Zhao. Fuzz Testing Method of Binary Code Based on Deep Reinforcement Learning [J]. Computer Science, 2024, 51(6A): 230800078-7. |
| [10] | LI Qiuyue, HAN Daojun, ZHANG Lei, XU Tao. Fine-grained Vulnerability Detection Based on Hierarchical Attention Networks and Integral Gradients [J]. Computer Science, 2024, 51(12): 326-333. |
| [11] | LIU Jiahao, JIANG He. DeepGenFuzz:An Efficient PDF Application Fuzzing Test Case Generation Framework Based on Deep Learning [J]. Computer Science, 2024, 51(12): 53-62. |
| [12] | LIU Yingying, YANG Qiuhui, YAO Bangguo, LIU Qiaoyun. Study on REST API Test Case Generation Method Based on Dependency Model [J]. Computer Science, 2023, 50(9): 101-107. |
| [13] | LIU Ziwen, YU Lijuan, SU Yixing, ZHAO Yao, SHI Zhu. Test Case Generation Based on Web Application Front-end Behavior Model [J]. Computer Science, 2023, 50(7): 18-26. |
| [14] | LIU Zerun, ZHENG Hong, QIU Junjie. Smart Contract Vulnerability Detection Based on Abstract Syntax Tree Pruning [J]. Computer Science, 2023, 50(4): 317-322. |
| [15] | YANG Yahui, MA Rongkuan, GENG Yangyang, WEI Qiang, JIA Yan. Black-box Fuzzing Method Based on Reverse-engineering for Proprietary Industrial Control Protocol [J]. Computer Science, 2023, 50(4): 323-332. |
|
||