Computer Science ›› 2025, Vol. 52 ›› Issue (2): 91-98.doi: 10.11896/jsjkx.240400127
• Database & Big Data & Data Science • Previous Articles Next Articles
CHEN Jiahao1, XIE Liang1, LIAO Sihao1, WU Yuchen1, XU Haijiao2
CLC Number:
[1]SALINAS D,FLUNKERT V,GASTHAUS J,et al.DeepAR:Probabilistic forecasting with autoregressive recurrent networks[J].International Journal of Forecasting,2020,36(3):1181-1191. [2]BAHDANAU D,CHO K,BENGIO Y.Neural machine transla-tion by jointly learning to align and translate[J].arXiv:1409.0473,2014. [3]BELGHZI M I,BARATIN A,RAJESHWAR S,et al.Mutual information neural estimation[C]//International Conference on Machine Learning.PMLR,2018:531-540. [4]BINKOWSKI M,MARTI G,DONNAT P.Autoregressive con-volutional neural networks for asynchronous time series[C]//International Conference on Machine Learning.PMLR,2018:580-589. [5]BOX G.BOX and JENKINS:time series analysis,forecastingand control[M]//A Very British Affair:Six Britons and the Development of Time Series Analysis During the 20th Century.London:Palgrave Macmillan UK,2013:161-215. [6]VAN GESTEL T,SUYKENS J A K,BAESTAENS D E,et al.Financial time series prediction using least squares support vector machines within the evidence framework[J].IEEE Transactions on Neural Networks,2001,12(4):809-821. [7]BOX G E P,PIERCE D A.Distribution of residual autocorrela-tions in autoregressive-integrated moving average time series models[J].Journal of the American statistical Association,1970,65(332):1509-1526. [8]YOO J,SOUN Y,PARK Y,et al.Accurate multivariate stockmovement prediction via data-axis transformer with multi-level contexts[C]//Proceedings of the 27th ACM SIGKDD Confe-rence on Knowledge Discovery & Data Mining.2021:2037-2045. [9]DING Q,WU S,SUN H,et al.Hierarchical Multi-Scale Gaus-sian Transformer for Stock Movement Prediction[C]//IJCAI.2020:4640-4646. [10]HAN M,XU M.Laplacian echo state network for multivariate time series prediction[J].IEEE Transactions on Neural Networks and Learning Systems,2017,29(1):238-244. [11]HOCHREITER S,SCHMIDHUBER J.Long short-term memory[J].Neural Computation,1997,9(8):1735-1780. [12]VARGAS M R,DE LIMA B S L P,EVSUKOFFA G.Deep learning for stock market prediction from financial news articles[C]//2017 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications(CIVEMSA).IEEE,2017:60-65. [13]NIEPERT M,AHMED M,KUTZKOV K.Learning convolu-tional neural networks for graphs[C]//International Conference on Machine Learning.PMLR,2016:2014-2023. [14]CHEN W,JIANG M,ZHANG W G,et al.A novel graph convolutional feature based convolutional neural network for stock trend prediction[J].Information Sciences,2021,556:67-94. [15]YU B,YIN H,ZHU Z.Spatio-temporal graph convolutional networks:A deep learning framework for traffic forecasting[J].arXiv:1709.04875,2017. [16]LAI G,CHANG W C,YANG Y,et al.Modeling long-and short-term temporal patterns with deep neural networks[C]//The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval.2018:95-104. [17]SHIN S Y,SUN F K,LEE H.Temporal pattern attention for multivariate time series forecasting[J].Machine Learning,2019,108:1421-1441. [18]VASWANI A,SHAZEERN,PARMAR N,et al.Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems.2017:6000-6010. [19]WU Z,PAN S,LONG G,et al.Connecting the dots:Multiva-riate time series forecasting with graph neural networks[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2020:753-763. [20]HOU M,XU C,LIU Y,et al.Stock trend prediction with multi-granularity data:A contrastive learning approach with adaptive fusion[C]//Proceedings of the 30th ACM International Confe-rence on Information & Knowledge Management.2021:700-709. [21]HOU M,XU C,LI Z,et al.Multi-Granularity Residual Learning with Confidence Estimation for Time Series Prediction[C]//Proceedings of the ACM Web Conference 2022.2022:112-121. [22]WANG M,WANG H,ZHANG F.FAMC-Net:Frequency Domain Parity Correction Attention and Multi-Scale Dilated Convolution for Time Series Forecasting[C]//Proceedings of the 32nd ACM International Conference on Information and Know-ledge Management.2023:2554-2563. [23]WANG H,PENG J,HUANG F,et al.Micn:Multi-scale local and global context modeling for long-term series forecasting[C]//The Eleventh International Conference on Learning Re-presentations.2022. [24]JOUIN M,GOURIVEAU R,HISSEL D,et al.Prognostics ofPEM fuel cell in a particle filtering framework[J].International Journal of Hydrogen Energy,2014,39(1):481-494. [25]CHUNG H,SHIN K.Genetic algorithm-optimized multi-channel convolutional neural network for stock market prediction[J].Neural Computing and Applications,2020,32(12):7897-7914. [26]FAN J,SHEN Y.StockMixer:A Simple Yet Strong MLP-Based Architecture for Stock Price Forecasting[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2024:8389-8397. |
[1] | ZHANG Jianliang, LI Yang, ZHU Qingshan, XUE Hongling, MA Junwei, ZHANG Lixia, BI Sheng. Substation Equipment Malfunction Alarm Algorithm Based on Dual-domain Sparse Transformer [J]. Computer Science, 2024, 51(5): 62-69. |
[2] | XU Junwen, CHEN Zonglei, LI Tianrui, LI Chongshou. Time Series Prediction of Hybrid Neural Networks Based on Seasonal Decomposition [J]. Computer Science, 2024, 51(11A): 231200008-7. |
[3] | WANG Hao, ZHOU Jiantao, HAO Xinyu, WANG Feiyu. Multivariate Time Series Forecasting Method Based on FRA [J]. Computer Science, 2023, 50(11A): 221100144-8. |
[4] | ZHENG Jian,BAI Xiang-en,XIAO Ying-jie and ZHANG Hao. Combination Prediction Model of Mooring Load Based on Wavelet Analysis Method and Neutral Network [J]. Computer Science, 2013, 40(7): 254-257. |
|