Computer Science ›› 2026, Vol. 53 ›› Issue (1): 115-127.doi: 10.11896/jsjkx.241000163
• Database & Big Data & Data Science • Previous Articles Next Articles
SONG Yijing, ZHANG Jifu
CLC Number:
| [1]ZHANG J F,LI Y H,QIN X,et al.Related-Subspace- Based Local Outlier Detection Algorithm Using MapReduce[J].Ruan Jian Xue Bao/Journal of Software,2015,26(5):1079-1095. [2]MAXIMILIAN T,BERNHARD C G,ROMAN K.CLUSTERPurging:Efficient Outlier Detection Based on Rate-Distortion Theory[J].IEEE Transactions on Knowledge and Data Engineering,2023,35(2):1270-1282. [3]SAJANRAJ T,JASISON P M,RAGHAVENDRA S.Opera-tional pattern forecast improvement with outlier detection in metro rail transport system[J].Multimedia Tools and Applications,2024,83(4):11229-11245. [4]FANG J Z,WANG Z D,LIU W B,et al.A New Particle Swarm Optimization Algorithm for Outlier Detection:Industrial Data Clustering in Wire Arc Additive Manufacturing[J].IEEE Transactions on Automation Science and Engineering,2024,21(2):1244-1257. [5]HUANG J Z,ZHAO Y,MENG B,et al.SEAOP:a statisticalensemble approach for outlier detection in quantitative proteomics data[J].Briefings in Bioinformatics,2024,25(3):bbae129. [6]SINA D,ZEINAB T,NEGIN D.An outlier detection method based on the hidden Markov model and copula for wireless sensor networks[J].Wireless Networks,2024,30(6):4797-4810. [7]HOSSEIN M,MOHAMMAD J,HAMID R D,et al.RODEO:Robust Outlier Detection via Exposing Adaptive Out-of-Distribution Samples[C]//Forty-first International Conference on Machine Learning.2024:21-27. [8]ANTONELLA M,DAVID M,MANUELE B.Detecting outliers from pairwise proximities:Proximity isolation forests[J].Pattern Recognition,2023,138,109334. [9]MAXIMILIAN T,BERNHARD C G,ROMAN K.Cluster Purging:Efficient Outlier Detection Based on Rate-Distortion Theory[J].IEEE Transactions on Knowledge and Data Engineering,2023,l.35(2):1270-1282. [10]PANG G S,XU H Z,GAO L B,et al.Selective Value Coupling Learning for Detecting Outliers in High Dimensional Categorical Data[C]//International Conference on Information and Know-ledge Management.2023:807-816. [11]LI J L,ZHANG J F,PANG N.Weighted Outlier Detection of High-Dimensional Categorical Data Using Feature Grouping[J].IEEE Transactions on Systems,Man,and Cybernetics:Systems,2020,50(11):4295-4308. [12]AKANKSHA M,RAJEEV K.Combination fairness with scores in outlier detection ensembles[J].Information Sciences,2023,645:119337. [13]AGGARWAL C C.Outlier ensembles:position paper[J].SIGKDD Explorations,2013,14(2):49-58. [14]AGGARWAL C C,SATHE S.Theoretical foundations algo-rithms for outlier ensembles[J].SIGKDD Explorations,2015,17(1):24-47. [15]ZIMEK A,CAMPELLO R,SANDER J.Ensembles for unsupervised outlier detection:challenges and research questions a position paper[J].SIGKDD Explorations,2013,15(1):11-22. [16]HOU S Y,JIANG G X,WANG W J.A Label Noise Filtering Method Based on Relative Outlier Factor[J].ACTA AUTOMATICA SINICA,2024,50(1):1-15. [17]CAI S H,HUANG R B,CHEN J F.An effificient outlier detection method for data streams based onclosed frequent patterns by considering antimonotonic constraints[J].Information Scien-ces,2021,555:125-146. [18]JAVIER M,MARA C R,BERTRAND N.A review of recent approaches on wrapper feature selection for intrusion detection[J].Expert Systems with Applications,2022,198:116822. [19]LIU C,PENG D Z,CHEN H M,et al.Attribute granules-based object entropy for outlier detection in nominal data[J].Engineering Applications of Artificial Intelligence,2024,133:108198. [20]TANG J,QU M,WANG M Z.LINE:Large-scale Information Network Embedding[C]//Proceedings of the 24th International Conference on World Wide Web.2015:18-22. [21]DINO I,RUGGERO G,ROSA M.A Semisupervised Approach to the Detection and Characterization of Outliers in Categorical Data[J].IEEE Transactions on Neural Networks and Learning Systems,2017,28(5):1017-1029. [22]PANG G S,GAO L,CHEN L.Outlier Detection in ComplexCategorical Data by Modeling the Feature Value Couplings[C]//International Joint Conference on Artificial Intelligence.2016:1902-1908. [23]PANG G S,GAO L,CHEN L.Homophily outlier detection innon-IID categorical data[J].Data Mining and Knowledge Discovery,2021,35(4):1163-1224. [24]XU H Z,WANG Y J,WU Z Y,et al.Embedding-Based Complex Feature Value Coupling Learning for Detecting Outliers in Non- IID Categorical Data[C]//AAAI Conference on Artificial Intelligence.2019:5541-5548. [25]ZHANG X Y,DOU W H,HE Q,et al.Lshiforest:A generic framework for fast tree isolation based ensemble anomaly analysis[J].IEEE International Conference on Data Engineering.2017:983-994. [26]XIANG H L,ZHANG X Y,HU H S,et al.OptIForest:Optimal Isolation Forest for Anomaly Detection[C]//International Joint Conference on Artificial Intelligence.2023:2379-2387. [27]AU W B,KEITH C C,ANDREW W,et al.AttributeClustering for Grouping,Selection,and Classification of Gene Expression Data[J].IEEE/ACM Transactions on Computational Biology and Bioinformatics,2007,4(1):157. [28]ZHENG L,CHAO F,PARTHALÁIN N M,et al.Featuregrouping and selection:A graph-based approach[J].Information Sciences,2021,546:1256-1272. [29]TANG X C,DAI Y W,SUN P,et al.Interaction-based featureselection using Factorial Design[J].Neurocomputing,2018,281:47-54. [30]AKANKSHA M,RAJEEV K.Building outlier detection ensembles by selective parameterization of heterogeneous methods[J].Pattern Recognition Letters,2021,146:126-133. [31]LIU H Y,MA F D,HE S B,et al.Fairness-aware outlier ensemble[J].arXiv:2103.09419,2021. [32]CHEN X J,YE Y M,XU X F,et al.A feature group weighting method for subspace clustering of high-dimensional data[J].Pattern Recognition,2012,45(1):434-446. [33]FENG Y,ZHAO S Y,ZHANG Y Z,et al.Noise-TolerantLearning with Silhouette Coefficient for Unsupervised Person ReIdentification[C]//IEEE International Conference on Multimedia and Expo.2022:1-6. [34]SAHAND H,MATIAS C K,ROBERT J B.Extended Isolation Forest[J].IEEE Transactions on Knowledge and Data Engineering,2021,33(4):1479-1489. [35]LIU F,TING K,ZHOU Z H.Isolation forest[C]//IEEE International Conference on Data Mining.2008:413-422. |
| [1] | TAN Qiyin, YU Jiong, CHEN Zixin. Outlier Detection Method Based on Adaptive Graph Autoencoder [J]. Computer Science, 2025, 52(6): 129-138. |
| [2] | XING Kaiyan, CHEN Wen. Multi-generator Active Learning Algorithm Based on Reverse Label Propagation and ItsApplication in Outlier Detection [J]. Computer Science, 2024, 51(4): 359-365. |
| [3] | XU Maolong, JIANG Gaoxia, WANG Wenjian. Label Noise Filtering Framework Based on Outlier Detection [J]. Computer Science, 2024, 51(2): 87-99. |
| [4] | LIU Yi, MAO Ying-chi, CHENG Yang-kun, GAO Jian, WANG Long-bao. Locality and Consistency Based Sequential Ensemble Method for Outlier Detection [J]. Computer Science, 2022, 49(1): 146-152. |
| [5] | LIU Li-cheng, XU Yi-fan, XIE Gui-cai, DUAN Lei. Outlier Detection and Semantic Disambiguation of JSON Document for NoSQL Database [J]. Computer Science, 2021, 48(2): 93-99. |
| [6] | ZHONG Ying-yu, CHEN Song-can. High-order Multi-view Outlier Detection [J]. Computer Science, 2020, 47(9): 99-104. |
| [7] | LIU Zhen-peng, SU Nan, QIN Yi-wen, LU Jia-huan, LI Xiao-fei. FS-CRF:Outlier Detection Model Based on Feature Segmentation and Cascaded Random Forest [J]. Computer Science, 2020, 47(8): 185-188. |
| [8] | LI Chang-jing,ZHAO Shu-liang,CHI Yun-xian. Outlier Detection Algorithm Based on Spectral Embedding and Local Density [J]. Computer Science, 2019, 46(3): 260-266. |
| [9] | FENG Gui-lan, ZHOU Wen-gang. Spark-based Parallel Outlier Detection Algorithm of K-nearest Neighbor [J]. Computer Science, 2018, 45(11A): 349-352. |
| [10] | YING Yi, REN Kai, LIU Ya-jun. Network Log Analysis Technology Based on Big Data [J]. Computer Science, 2018, 45(11A): 353-355. |
| [11] | XU Dong, WANG Yan-jun, MENG Yu-long, ZHANG Zi-ying. Improved Data Anomaly Detection Method Based on Isolation Forest [J]. Computer Science, 2018, 45(10): 155-159. |
| [12] | GOU Jie, MA Zi-tang and ZHANG Zhe-cheng. PODKNN:A Parallel Outlier Detection Algorithm for Large Dataset [J]. Computer Science, 2016, 43(7): 251-254. |
| [13] | HONG Sha, LIN Jia-li and ZHANG Yue-liang. Density-based Outlier Detection on Uncertain Data [J]. Computer Science, 2015, 42(5): 230-233. |
| [14] | JIANG Yuan-kai, ZHENG Hong-yuan and DING Qiu-lin. On Density Based Outlier Detection for Uncertain Data [J]. Computer Science, 2015, 42(4): 172-176. |
| [15] | ZHANG Xian-ji and WANG Lun-wen. Outlier Detection Method Based on Constructive Neural Networks [J]. Computer Science, 2014, 41(7): 297-300. |
|
||