Computer Science ›› 2022, Vol. 49 ›› Issue (8): 267-272.doi: 10.11896/jsjkx.210700175
• Artificial Intelligence • Previous Articles Next Articles
LI Qi-ye, XING Hong-jie
CLC Number:
[1]TAX D M J.One-class classification:concept learning in the absence of counter examples[D].Delft:Delf University of Technology,2001. [2]PENNY K I,JOLLIFFE I T.A comparison of multivariate outlier detection methods for clinical laboratory safety data[J].The Statistician,2001,50(3):295-307. [3]OH C K,SOHN H,BAE I H.Statistical novelty detection within the Yeongjong suspension bridge under environmental and operational variations[J].Smart Materials and Structures,2009,18(12):5022-5029. [4]SCHÖLKOPF B,WILLIAMSON R C,SMOLA A J.Support vector method for novelty detection[C]//Advances in Neural Information Processing Systems.2000:582-588. [5]TAX D M J,DUIN R P W.Support vector data description[J].Machine Learning,2004,54(1):45-66. [6]SCHÖLKOPF B,SMOLA A,MÜLLER K R.Nonlinear component analysis as a kernel eigenvalue problem[J].Neural Computation,1998,10(5):1299-1319. [7]JOLLIFFE I T.Principal Component Analysis[M].Berlin:Springer-Verlag,2005. [8]TEIXEIRA A R,TOMÉ A M,STADLTHANNER K,et al.KPCA denosing and the pre-image problem revisited[J].Digital Signal Processing,2008,18(4):568-580. [9]LIAN H.On feature selection with principal component analysis for one-class SVM[J].Pattern Recognition Letters,2012,33(9):1027-1031. [10]HILL J,CORONA E,AO J,et al.Information Theoretic Clustering for Medical Image Segmentation[M].Berlin:Springer-Verlag,2014. [11]DEBRUYNE M,VERDONCK T.Robust kernel principal component and classification[J].Advances in Data Analysis and Classification,2010,4(2):151-167. [12]KIM C,KLABIAN D.A simple and fast algorithm for L1-norm kernel PCA[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2019,42(8):1842-1855. [13]DUAN X,QI P,TIAN Z.Registration for variform object of remote-sensing image using improved robust weighted kernel principal component analysis[J].Journal of The Indian Society of Remote Sensing,2016,44(5):675-686. [14]FAN J,CHOW T W S.Exactly robust kernel principal component analysis[J].IEEE Transactions on Neural Networks and Learning Systems,2020,31(3):749-761. [15]HOFFMANN H.Kernel PCA for novelty detection[J].Pattern Recognition,2007,40(3):863-874. [16]DUDA R O,HART P E,STORK D G.Pattern Classification.2nd Ed.[M].New York:Wiley Press,2001. [17]XIAO Y,WANG H,XU W,et al.L1 norm based KPCA for novelty detection[J].Pattern Recognition,2013,46(1):389-396. [18]ALZATE C,SUYKES J.Kernel component analysis using anepsilon-insensitive robust loss function[J].IEEE Transactions on Neural Networks,2008,19(9):1583-1598. [19]WANG D,TANAKA T.Robust kernel principal componentanalysis with l2,1-regularized loss minimization[J].IEEE Access,2020,8(81):864-875. [20]PRINCIPE J C.Information Theoretic Learning:Renyi’s Entropy and Kernel Perspectives[M].New York:Springer,2010. [21]LIU W,POKHAREL P P,PRINCIPE J C.Correntropy:properties and applications in non-Gaussian signal processing[J].IEEE Transactions on Signal Processing,2007,55(11):5286-5298. [22]HE R,HU B,ZHENG W,et al.Robust principal componentanalysis based on maximum correntropy criterion[J].IEEE Transactions on Image Processing,2011,20(6):1485-1494. [23]YUAN X,HU B.Robust feature extraction via information theoretic learning[C]//International Conference on Machine Learning,Montreal.2009:1193-1200. [24]KWAK N.Principal component analysis based on L1-norm maxi-mization[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2008,30(9):1672-1680. [25]VAPNIK V N.The Nature of Statistical Learning Theory[M].New York:Springer,2000. [26]ZHOU Z.Machine Learning[M].Beijing:Tsinghua University Press,2016. [27]GÜLER O.Convex Analysis[M].New York:Springer,2010. [28]SUN Q,ZHANG H,WANG X,et al.Sparsity constrained recursive generalized maximum correntropy criterion with variable center algorithm[J].IEEE Transactions on Circuits and Systems II:Express Briefs,2020,67(12):3517-3521. [29]GAUTAM C,BALAJI R,SUDHARSAN K,et al.Localizedmultiple kernel learning for anomaly detection:one-class classification[J].Knowledge Based Systems,2019,165:241-252. [30]LICHMAN M.UCI Machine Learning Repository[EB/OL].University of California,Irvine,School of Information and Computer Sciences,2019.http://archive.ics.uci.edu/ml. [31]WU M,YE J.A small sphere and large margin approach for novelty detection using training data with outliers[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(11):2088-2092. [32]DENG H,XU R.Model selection for anomaly detection in wireless ad hoc networks[C]//2007 IEEE Symposium on Computational Intelligence and Data Mining.2007:540-546. [33]WANG S,YU J,LAPIRA E,et al.A modified support vector data description based novelty detection approach for machinery components[J].Applied Soft Computing,2013,13(2):1193-1205. [34]XIAO Y,WANG H,XU W.Parameter selection of Gaussiankernel for one-class SVM[J].IEEE Transactions on Cyberne-tics,2015,45:941-953. [35]SILVERMAN B W.Density Estimation for Statistics and Data Analysis[M].London:Chapman and Hall,1986. [36]LI Y,WANG Y,WANG Y,et al.Quantum clustering using kernel entropy component analysis[J].Neurocomputing,2016,202:36-48. |
[1] | QUE Hua-kun, FENG Xiao-feng, LIU Pan-long, GUO Wen-chong, LI Jian, ZENG Wei-liang, FAN Jing-min. Application of Grassberger Entropy Random Forest to Power-stealing Behavior Detection [J]. Computer Science, 2022, 49(6A): 790-794. |
[2] | LIN Yun, HUANG Zhen-hang, GAO Fan. Diffusion Variable Tap-length Maximum Correntropy Criterion Algorithm [J]. Computer Science, 2021, 48(5): 263-269. |
[3] | LIN Yun, HUANG Zhen-hang, GAO Fan. Diffusion Maximum Correntropy Criterion Variable Step-size Affine Projection Sign Algorithm [J]. Computer Science, 2020, 47(6): 242-246. |
[4] | ZHANG Ming-yue, WANG Jing. Interactive Likelihood Target Tracking Algorithm Based on Deep Learning [J]. Computer Science, 2019, 46(2): 279-285. |
[5] | LV Ning, YAN Lu-qi and BAI Guang-yuan. Fault Detection for Beer Fermentation Process Based on Segmentation Multiway Kernel Principal Component Analysis [J]. Computer Science, 2016, 43(Z6): 25-27. |
[6] | XING Hong-jie and WEI Yong-le. Selective Ensemble of SVDDs Based on Correntropy and Distance Variance [J]. Computer Science, 2016, 43(5): 252-256. |
[7] | . Feature Extraction and Parameter Selection of SVDD Using Simulated Annealing Approach [J]. Computer Science, 2013, 40(1): 302-305. |
[8] | WU Hong-yan,HUANG Dao-ping. Kernel Principal Component Analysis Based on Feature Vector Selection [J]. Computer Science, 2009, 36(7): 185-187. |
[9] | . [J]. Computer Science, 2008, 35(9): 210-212. |
|