Computer Science ›› 2023, Vol. 50 ›› Issue (11A): 230200072-7.doi: 10.11896/jsjkx.230200072
• Image Processing & Multimedia Technology • Previous Articles Next Articles
LI He, NIE Rencan, YANG Xiaofei, ZHANG Gucheng
CLC Number:
[1]CHEN J.Vegetation classification based on high-resolution sa-tellite image[J].J Remote Sens,2007,11:221-227. [2]XIAOYAN W,YONG L,ZHIYONG J.An IHS Fusion Method based on Structural Similarity[J].Remote Sensing Technology and Application,2011,26(5):670-676. [3]ZENG Y Y,HE J N.Remote Sensing Image Fusion MethodBased on Regional Wavelet Statistical Features[J].Jisuanji Gongcheng/ Computer Engineering,2011,37(19):198-200. [4]PING S,LEI D,JUAN N.Multi-scale Remote Sensing ImageFusion Method based on Region Segmentation[J].Remote Sensing Technology and Application,2013,27(6):844-849. [5]LI S,YANG B.A new pan-sharpening method using a com-pressed sensing technique[J].IEEE Transactions on Geoscience and Remote Sensing,2010,49(2):738-746. [6]YIN H.Sparse representation based pansharpening with details injection model[J].Signal Processing,2015,113:218-227. [7]GILLESPIE A R,KAHLE A B,WALKER R E.Color enhancement of highly correlated images.II.Channel ratio and “chromaticity” transformation techniques[J].Remote Sensing of Environment,1987,22(3):343-365. [8]LABEN C A,BROWER B V.Process for enhancing the spatial resolution of multispectral imagery using pan-sharpening[Z].Google Patents.2000 [9]TU T M,SU S C,SHYU H C,et al.A new look at IHS-likeimage fusion methods[J].Information Fusion,2001,2(3):177-186. [10]LIU J.Smoothing filter-based intensity modulation:A spectral preserve image fusion technique for improving spatial details[J].International Journal of Remote Sensing,2000,21(18):3461-3472. [11]WALD L,RANCHIN T.Liu’ Smoothing filter-based intensitymodulation:A spectral preserve image fusion technique for improving spatial details’[J].International Journal of Remote Sensing,2002,23(3):593-597. [12]VIVONE G,RESTAINO R,DALLA MURA M,et al.Contrast and error-based fusion schemes for multispectral image pansharpening[J].IEEE Geoscience and Remote Sensing Letters,2013,11(5):930-934. [13]AIAZZI B,ALPARONE L,BARONTI S,et al.Context-driven fusion of high spatial and spectral resolution images based on oversampled multiresolution analysis[J].IEEE Transactions on Geoscience and Remote Sensing,2002,40(10):2300-2312. [14]MASI G,COZZOLINO D,VERDOLIVA L,et al.Pansharpening by convolutional neural networks[J].Remote Sensing,2016,8(7):594. [15]SCARPA G,VITALE S,COZZOLINO D.Target-adaptiveCNN-based pansharpening[J].IEEE Transactions on Geos-cience and Remote Sensing,2018,56(9):5443-5457. [16]YANG J,FU X,HU Y,et al.PanNet:A deep network architecture for pan-sharpening[C]//Proceedings of the Proceedings of the IEEE International Conference on Computer Vision.2017. [17]WEI Y,YUAN Q,SHEN H,et al.Boosting the accuracy ofmultispectral image pansharpening by learning a deep residual network[J].IEEE Geoscience and Remote Sensing Letters,2017,14(10):1795-1799. [18]ZHANG Y,LIU C,SUN M,et al.Pan-sharpening using an efficient bidirectional pyramid network[J].IEEE Transactions on Geoscience and Remote Sensing,2019,57(8):5549-5463. [19]DENG L J,VIVONE G,JIN C,et al.Detail injection-based deep convolutional neural networks for pansharpening[J].IEEE Transactions on Geoscience and Remote Sensing,2020,59(8):6995-7010. [20]WANG L,YANG X M.Panchromatic sharpening feedback network of remote sensing image based on perception loss[J].Journal of Computer Science,2019,48(8):91-98. [21]XIANG Z,XIAO L,LIAO W,et al.MC-JAFN:Multilevel contexts-based joint attentive fusion network for pansharpening[J].IEEE Geoscience and Remote Sensing Letters,2021,19:1-5. [22]ZHANG W,LI J,HUA Z.Attention-Based Multistage FusionNetwork for Remote Sensing Image Pansharpening[J].IEEE Transactions on Geoscience and Remote Sensing,2021,60:1-16. [23]DOSOVITSKIY A,BEYER L,KOLESNIKOV A,et al.Animage is worth 16x16 words:Transformers for image recognition at scale[J].arXiv:2010.11929,2020. [24]MENG X,WANG N,SHAO F,et al.Vision Transformer for Pansharpening[J].IEEE Transactions on Geoscience and Remote Sensing,2022,60:1-11. [25]GONG M,ZHANG H,XU H,et al.Multi-patch ProgressivePansharpening with Knowledge Distillation[J].IEEE Transactions on Geoscience and Remote Sensing,2023,61:1-15. [26]WALD L,RANCHIN T,MANGOLINI M.Fusion of satelliteimages of different spatial resolutions:Assessing the quality of resulting images[J].Photogrammetric Engineering and Remote Sensing,1997,63(6):691-699. [27]ALPARONE L,BARONTI S,GARZELLI A,et al.A globalquality measurement of pan-sharpened multispectral imagery[J].IEEE Geoscience and Remote Sensing Letters,2004,1(4):313-317. [28]GARZELLI A,NENCINI F.Hypercomplex Quality Assessment of Multi/Hyperspectral Images[J].Geoscience and Remote Sensing Letters,2009,6(4):662-665. [29]ALPARONE L,WALD L,CHANUSSOT J,et al.Comparisonof Pansharpening Algorithms:Outcome of the 2006 GRS-S Data-Fusion Contest[J].IEEE Transactions on Geoscience and Remote Sensing,2007(10):45. [30]FANG F,LI F,SHEN C,et al.A Variational Approach for Pan-Sharpening[J].IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society,2013,22(7):2822-2834. [31]KANEKO S,SATOH Y,IGARASHI S.Using selective correlation coefficient for robust image registration[J].Pattern Recognition,2003,36(5):1165-1173. [32]WANG Z,BOVIK A C.A universal image quality index[J].IEEE Signal Processing Letters,2002,9(9):81-84. [33]ALPARONE L,AIAZZI B,BARONTI S,et al.Multispectral and Panchromatic Data Fusion Assessment Without Reference[J].Photogrammetric Engineering & Remote Sensing,2008,74(2):193-200. |
[1] | LI Ke, YANG Ling, ZHAO Yanbo, CHEN Yonglong, LUO Shouxi. EGCN-CeDML:A Distributed Machine Learning Framework for Vehicle Driving Behavior Prediction [J]. Computer Science, 2023, 50(9): 318-330. |
[2] | ZHAO Mingmin, YANG Qiuhui, HONG Mei, CAI Chuang. Smart Contract Fuzzing Based on Deep Learning and Information Feedback [J]. Computer Science, 2023, 50(9): 117-122. |
[3] | LI Haiming, ZHU Zhiheng, LIU Lei, GUO Chenkai. Multi-task Graph-embedding Deep Prediction Model for Mobile App Rating Recommendation [J]. Computer Science, 2023, 50(9): 160-167. |
[4] | HUANG Hanqiang, XING Yunbing, SHEN Jianfei, FAN Feiyi. Sign Language Animation Splicing Model Based on LpTransformer Network [J]. Computer Science, 2023, 50(9): 184-191. |
[5] | ZHU Ye, HAO Yingguang, WANG Hongyu. Deep Learning Based Salient Object Detection in Infrared Video [J]. Computer Science, 2023, 50(9): 227-234. |
[6] | YI Liu, GENG Xinyu, BAI Jing. Hierarchical Multi-label Text Classification Algorithm Based on Parallel Convolutional Network Information Fusion [J]. Computer Science, 2023, 50(9): 278-286. |
[7] | LUO Yuanyuan, YANG Chunming, LI Bo, ZHANG Hui, ZHAO Xujian. Chinese Medical Named Entity Recognition Method Incorporating Machine ReadingComprehension [J]. Computer Science, 2023, 50(9): 287-294. |
[8] | ZHANG Yian, YANG Ying, REN Gang, WANG Gang. Study on Multimodal Online Reviews Helpfulness Prediction Based on Attention Mechanism [J]. Computer Science, 2023, 50(8): 37-44. |
[9] | SONG Xinyang, YAN Zhiyuan, SUN Muyi, DAI Linlin, LI Qi, SUN Zhenan. Review of Talking Face Generation [J]. Computer Science, 2023, 50(8): 68-78. |
[10] | WANG Xu, WU Yanxia, ZHANG Xue, HONG Ruize, LI Guangsheng. Survey of Rotating Object Detection Research in Computer Vision [J]. Computer Science, 2023, 50(8): 79-92. |
[11] | ZHOU Ziyi, XIONG Hailing. Image Captioning Optimization Strategy Based on Deep Learning [J]. Computer Science, 2023, 50(8): 99-110. |
[12] | TENG Sihang, WANG Lie, LI Ya. Non-autoregressive Transformer Chinese Speech Recognition Incorporating Pronunciation- Character Representation Conversion [J]. Computer Science, 2023, 50(8): 111-117. |
[13] | ZHANG Xiao, DONG Hongbin. Lightweight Multi-view Stereo Integrating Coarse Cost Volume and Bilateral Grid [J]. Computer Science, 2023, 50(8): 125-132. |
[14] | WANG Jiahao, ZHONG Xin, LI Wenxiong, ZHAO Dexin. Human Activity Recognition with Meta-learning and Attention [J]. Computer Science, 2023, 50(8): 193-201. |
[15] | WANG Yu, WANG Zuchao, PAN Rui. Survey of DGA Domain Name Detection Based on Character Feature [J]. Computer Science, 2023, 50(8): 251-259. |
|