Computer Science ›› 2023, Vol. 50 ›› Issue (11A): 230100130-11.doi: 10.11896/jsjkx.230100130
• Big Data & Data Science • Previous Articles Next Articles
CAO Jinxin1, XU Weizhong1, JIN Di2, DING Weiping1
CLC Number:
[1]WANG X F,LI X,CHEN G R.Complex network theory and its applications[M]//Beijing:Tsinghua University Press,2006. [2]EULER L.The seven bridges of Königsberg[J].The world of mathematics,1956,1:573-580. [3]ERDO″S P,RÉNYI A.On the strength of connectedness of a random graph[J].Acta Mathematica Hungarica,1961,12(1/2):261-267. [4]WATTS D J,STROGATZ S H.Collective dynamics of ‘small-world’ networks[J].Nature,1998,393(6684):440. [5]BARABÁSI A L,ALBERT R.Emergence of scaling in random networks[J].Science,1999,286(5439):509-512. [6]GIRVAN M,NEWMAN M E J.Community structure in social and biological networks[J].Proceedings of the National Academy of Sciences,2002.99(12):7821-7826. [7]HILL R A,DUNBAR R I M.Social network size in humans[J].Human Nature,2003,14(1):53-72. [8]FORTUNATO S.Community detection in graphs[J].PhysicsReports,2010,486(3/4/5):75-174. [9]JIN D,YOU X X,LIU Y S,et al.Stuctural Feature Enhanced Markov Random Field for Community Detection in Large-Scale networks[J].Chinese Journal of Computer.2019,40(12):2822-2835. [10]ZHANG L,LIU Q,YANG S S,et al.A Dual Representation-Based Multi-Objective Evolutionary Algorithm for Overlapping Community Detection[J].Acta Electronica Sinica,2021,49(11):2101-2107. [11]DOURISBOURE Y,GERACI F,PELLEGRINI M.Extractionand classification of dense communities in the web[C]//Proceedings of the 16th International Conf.on World Wide Web.ACM,2007:461-470. [12]CHEN J C,YUAN B.Detecting functional modules in the yeast protein-protein interaction network[J].Bioinformatics,2006,22(18):2283-2290. [13]RIVES A W,GALITSKI T.Modular organization of cellularnetworks[J].Proceedings of the National Academy of Sciences,2003,100(3):1128-1133. [14]SPIRIN V,MIRNY L A.Protein complexes and functional mo-dules in molecular networks[J].Proceedings of the National Academy of Sciences,2003,100(21):12123-12128. [15]MACQUEEN J.Some methods for classification and analysis of multivariate observations[C]//Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability.1967:281-297. [16]GLARIA F,HERNÁNDEZ C,LADRA S,et al.Compact structure for sparse undirected graphs based on a clique graph partition[J].Information Sciences,2021,544:485-499. [17]DONETTI L,MUNOZ M A.Detecting network communities:a new systematic and efficient algorithm[J].Journal of Statistical Mechanics:Theory and Experiment,2004,2004(10):P10012. [18]WU C R,PENG Q L,LEE J,et al.Effective hierarchical clustering based on structural similarities in nearest neighbor graphs[J].Knowledge-Based Systems,2021,228:107295. [19]NEWMAN M E J,GIRVAN M.Finding and evaluating community structure in networks[J].Physical review E,2004,69(2):026113. [20]ROSVALL M,BERGSTROM C T.Maps of random walks on complex networks reveal community structure[J].Proceedings of the National Academy of Sciences,2008,105(4):1118-1123. [21]FAYSAL M A M,ARIFUZZAMAN S.Distributed community detection in large networks using an information-theoretic approach[C]//Proceedings of 2019 IEEE International Conference on Big Data.IEEE,2019:4773-4782. [22]HOLLAND P W,LASKEY K B,LEINHARDT S.Stochasticblockmodels:First steps[J].Social Networks,1983,5(2):109-137. [23]KARRER B,NEWMAN M E J.Stochastic blockmodels andcommunity structure in networks[J].Physical Review E,2011,83(1):016107. [24]JIN D,CHEN Z,HE D X,et al.Modeling with node degree preservation can accurately find communities[C]//Proceedings of the 29th AAAI Conf.on Artificial Intelligence.2015. [25]CUI P,WANG X,PEI J,et al.A survey on network embedding[J].IEEE Transactions on Knowledge and Data Engineering,2018,31(5):833-852. [26]LIU F Z,XUE S,WU J,et al.Deep learning for community detection:progress,challenges and opportunities[J].arXiv:2005.08225,2020. [27]SU X,XUE S,LIU F Z,et al.A comprehensive survey on community detection with deep learning[J].IEEE Transactions on Neural Networks and Learning Systems,2021,33:6737-6748. [28]NEWMAN M E J,CLAUSET A.Structure and inference in annotated networks[J].Nature Communications,2016,7(1):1-11. [29]JIN D,YU Z Z,JIAO P F,et al.A survey of community detection approaches:From statistical modeling to deep learning[J].IEEE Transactions on Knowledge and Data Engineering,2023,35(2):1147-1170. [30]SHI J B,JITENDRA M.Normalized cuts and image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(8):888-905. [31]MAJI S,VISHNOI N K,MALIK J.Biased normalized cuts[C]//Proceedings of 2011 IEEE Conference on Computer Vision and Pattern Recognition.2011:2057-2064. [32]CHEW S E,CAHILL N D.Semi-supervised normalized cuts for image segmentation[C]//Proceedings of the IEEE International Conference on Computer Vision.2015:1716-1723. [33]SUN Z J,SUN Y N,CHANG X F,et al.Community detection based on the Matthew effect[J].Knowledge-Based Systems,2020,205:106256. [34]SUN P G.Weighting links based on edge centrality for community detection[J].Physica A:Statistical Mechanics and Its Applications,2014,394:346-357. [35]LI T X,LEI L H,BHATTACHARYYA S,et al.Hierarchical community detection by recursive partitioning[J].Journal of the American Statistical Association,2022,117(538):951-968. [36]BLONDEL V D,GUILLAUME J L,LAMBIOTTE R,et al.Fast unfolding of communities in large networks[J].Journal of Statistical Mechanics:Theory and Experiment,2008,2008(10):P10008. [37]QIAO S J,HAN N,GAO Y J,et al.A fast parallel community discovery model on complex networks through approximate optimization[J].IEEE Transactions on Knowledge and Data Engineering,2018,30(9):1638-1651. [38]KIRKPATRICK S,GELATT C D,VECCHI M P.Optimization by simulated annealing[J].Science,1983,220(4598):671-680. [39]AIROLDI E M,BLEI D M,FIENBERG S E,et al.Mixed membership stochastic blockmodels[J].Journal of Machine Learning Research,2008,9:1981-2014. [40]HE C B,ZHANG Q,TANG Y,et al.Community detectionmethod based on robust semi-supervised nonnegative matrix factorization[J].Physica A:Statistical Mechanics and its Applications,2019,523:279-291. [41]LUO X,LIU Z G,JIN L,et al.Symmetric nonnegative matrix factorization-based community detection models and their convergence analysis[J].IEEE Transactions on Neural Networks and Learning Systems,2021,33(3):1203-1215. [42]GROVER A,LESKOVEC J.node2vec:Scalable feature learning for networks[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2016:855-864. [43]PEROZZI B,AL-RFOU R,SKIENA S.Deepwalk:Online lear-ning of social representations[C]//Proceedings of the 20th ACM SIGKDD International Conf.on Knowledge Discovery and Data Mining.2014:701-710. [44]LONG Q Q,WANG Y M,DU L,et al.Hierarchical community structure preserving network embedding:A subspace approach[C]//Proceedings of the 28th ACM international conference on information and knowledge management.2019:409-418. [45]WANG D X,CUI P,ZHU W W.Structural deep network embedding[C]//Proceedings of the 22nd ACM SIGKDD International Conf.on Knowledge Discovery and Data Mining.2016:1225-1234. [46]XU R B,CHE Y,WANG X M,et al.Stacked autoencoder-based community detection method via an ensemble clustering framework[J].Information sciences,2020,526:151-165. [47]CAI B,WANG Y P,ZENG L N,et al.Edge classification based on Convolutional Neural Networks for community detection in complex network[J].Physica A:Statistical Mechanics and Its Applications,2020,556:124826. [48]JIA Y T,ZHANG Q Q,ZHANG W N,et al.Communitygan:Community detection with generative adversarial nets[C]//Proceedings of the World Wide Web Conference.2019:784-794. [49]CHEN J Y,GONG Z G,MO J Q,et al.Self-training enhanced:Network embedding and overlapping community detection with adversarial learning[J].IEEE Transactions on Neural Networks and Learning Systems,2021,33:6737-6748. [50]RODRIGUEZ A,LAIO A.Clustering by fst search and find of density peaks[J].Science,2014,344(6191):1492-1496. [51]CHEN Y W,HU X L,FAN W T,et al.Fast density peak clustering for large scale data based on kNN[J].Knowledge-Based Systems,2020,187:104824. [52]YU H,CHEN L Y,YAO J T.A three-way density peak clustering method based on evidence theory[J].Knowledge-Based Systems,2021,211:106532. [53]XU X,DING S F,WANG Y R,et al.A fast density peaks clustering algorithm with sparse search[J].Information Sciences,2021,554:61-83. [54]HOFMANN T.Probabilistic latent semantic indexing[C]//Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.ACM,1999:50-57. [55]BLEI D M,NG A Y,JORDAN M I.Latent dirichlet allocation[J].Journal of Machine Learning Research,2003,3:993-1022. [56]STREICH A P,FRANK M,BASIN D,et al.Multi-assignment clustering for boolean data[C]//Proceedings of the 26th Annual International Conference on Machine Learning.2009:969-976. [57]MIKOLOV T,SUTSKEVER I,CHEN K,et al.Distributed representations of words and phrases and their compositionality[C]//Proceedings of Advances in Neural Information Proces-sing Systems.2013:3111-3119. [58]YANG Y,WANG H G,ZHU J Q,et al.Dataless short textclassification based on biterm topic model and word embeddings[C]//Proceedings of the 29th International Conference on International Joint Conferences on Artificial Intelligence.2021:3969-3975. [59]FARD M M,THONET T,GAUSSIER E.Deep k-means:Join-tly clustering with k-means and learning representations[J].Pattern Recognition Letters,2020,138:185-192. [60]RUAN Y,FUHRY D,PARTHASARATHY S.Efficient community detection in large networks using content and links[C]//Proceedings of the 22nd International Conference on World Wide Web.2013:1089-1098. [61]BU Z,LI H J,CAO J,et al.Dynamic cluster formation game for attributed graph clustering[J].IEEE transactions on cyberne-tics,2017,49(1):328-341. [62]YANG J,MCAULEY J,LESKOVEC J.Community detection in networks with node attributes[C]//Proceedings of IEEE 13th International Conf.on Data Mining.IEEE,2013:1151-1156. [63]BALASUBRAMANYAN R,COHEN W W.Block-LDA:Jointly modeling entity-annotated text and entity-entity links[C]//Proceedings of the 2011 SIAM International Conf.on Data Mining.Society for Industrial and Applied Mathematics.2011:450-461. [64]WANG X,JIN D,CAO X C,et al.Semantic community identification in large attribute networks[C]//Proceedings of the AAAI Conf.on Artificial Intelligence.2016. [65]HU L,CHAN K,YUAN X H,et al.A variational Bayesianframework for cluster analysis in a complex network[J].IEEE Transactions on Knowledge and Data Engineering,2019,32(11):2115-2128. [66]JIN D,WANG K Z,ZHANG G,et al.Detecting communities with multiplex semantics by distinguishing background,general,and specialized topics[J].IEEE Transactions on Knowledge and Data Engineering,2019,32(11):2144-2158. [67]YANG C,LIU Z Y,ZHAO D L,et al.Network representation learning with rich text information[C]//Proceedings of the 24th International Joint Conference on Artificial Intelligence.2015. [68]NATARAJAN N,DHILLON I S.Inductive matrix completion for predicting gene-disease associations[J].Bioinformatics,2014,30(12):i60-i68. [69]KANG Z,LIU Z Y,PAN S R,et al.Fine-grained Attributed Graph Clustering[C]//Proceedings of the 2022 SIAM International Conference on Data Mining.Society for Industrial and Applied Mathematics.2022:370-378. [70]SUN X F,GUO J,DING X,et al.A general framework for content-enhanced network representation learning[J].arXiv:1610.02906,2016. [71]FAN S H,WANG X,SHI C,et al.One2multi graph autoencoder for multi-view graph clustering[C]//Proceedings of The Web Conference 2020.2020:3070-3076. [72]YANG L,WANG Y Y,GU J H,et al.JANE:Jointly Adversa-rial Network Embedding[C]//Proceedings of IJCAI.2020:1381-1387. [73]CUI G Q,ZHOU J,YANG C,et al.Adaptive graph encoder for attributed graph embedding[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2020:976-985. [74]ZHENG Y P,ZHANG X F,CHEN S Y,et al.When Convolutional Network Meets Temporal Heterogeneous Graphs:An Effective Community Detection Method[J].IEEE Transactions on Knowledge and Data Engineering,2023,35(2):2173-2178. [75]FETTAL C,LABIOD L,NADIF M.Efficient Graph Convolut-ion for Joint Node Representation Learning and Clustering[C]//Proceedings of the 15th ACM International Conference on Web Search and Data Mining.2022:289-297. [76]WANG C,PAN S R,HU R Q,et al.Attributed graph clustering:A deep attentional embedding approach[J].arXiv:1906.06532,2019. [77]LANCICHINETTI A,FORTUNATO S,RADICCHI F.Benchmark graphs for testing community detection algorithms[J].Physical review E,2008,78(4):046110. [78]LANCICHINETTI A,FORTUNATO S,KERTÉSZ J.Detecting the overlapping and hierarchical community structure in complex networks[J].New Journal of Physics,2009,11(3):033015. |
[1] | CHENG Haiyang, ZHANG Jianxin, SUN Qisen, ZHANG Qiang, WEI Xiaopeng. Deep Cross-modal Information Fusion Network for Stock Trend Prediction [J]. Computer Science, 2023, 50(5): 128-136. |
[2] | DUAN Shunran, YIN Meijuan, LIU Fenlin, JIAO Longlong, YU Lanlan. Nodes’ Ranking Model Based on Influence Prediction [J]. Computer Science, 2023, 50(3): 155-163. |
[3] | ZHANG Weiliang, CHEN Xiuhong. SSD Object Detection Algorithm with Cross-layer Fusion and Receptive Field Amplification [J]. Computer Science, 2023, 50(3): 231-237. |
[4] | CHEN Zhen, PU Yuanyuan, ZHAO Zhengpeng, XU Dan, QIAN Wenhua. Multimodal Sentiment Analysis Based on Adaptive Gated Information Fusion [J]. Computer Science, 2023, 50(3): 298-306. |
[5] | CHEN Duanbing, YANG Zhijie, ZENG Zhuo, FU Yan, ZHOU Junlin, ZHAO Junyan. Node Ranking Algorithm Based on Subgraph Features [J]. Computer Science, 2023, 50(11A): 230100122-7. |
[6] | LIU Hualing, ZHANG Guoxiang, WANG Liuyue, LIANG Huabi. Study on Credit Anti-fraud Based on Heterogeneous Information Network [J]. Computer Science, 2023, 50(11A): 221100173-9. |
[7] | ZHAO Xingwang, XUE Jinfang. Community Discovery Algorithm for Attributed Networks Based on Bipartite Graph Representation [J]. Computer Science, 2023, 50(11): 107-113. |
[8] | YAN Jia-dan, JIA Cai-yan. Text Classification Method Based on Information Fusion of Dual-graph Neural Network [J]. Computer Science, 2022, 49(8): 230-236. |
[9] | ZHANG Yuan, KANG Le, GONG Zhao-hui, ZHANG Zhi-hong. Related Transaction Behavior Detection in Futures Market Based on Bi-LSTM [J]. Computer Science, 2022, 49(7): 31-39. |
[10] | HE Yi-chen, MAO Yi-jun, XIE Xian-fen, GU Wan-rong. Matrix Transformation and Factorization Based on Graph Partitioning by Vertex Separator for Recommendation [J]. Computer Science, 2022, 49(6A): 272-279. |
[11] | ZHOU Chu-lin, CHEN Jing-dong, HUANG Fan. WiFi-PDR Fusion Indoor Positioning Technology Based on Unscented Particle Filter [J]. Computer Science, 2022, 49(6A): 606-611. |
[12] | WEI Peng, MA Yu-liang, YUAN Ye, WU An-biao. Study on Temporal Influence Maximization Driven by User Behavior [J]. Computer Science, 2022, 49(6): 119-126. |
[13] | TANG Chun-yang, XIAO Yu-zhi, ZHAO Hai-xing, YE Zhong-lin, ZHANG Na. EWCC Community Discovery Algorithm for Two-Layer Network [J]. Computer Science, 2022, 49(4): 49-55. |
[14] | GUO Lei, MA Ting-huai. Friend Closeness Based User Matching [J]. Computer Science, 2022, 49(3): 113-120. |
[15] | SHAO Yu, CHEN Ling, LIU Wei. Maximum Likelihood-based Method for Locating Source of Negative Influence Spreading Under Independent Cascade Model [J]. Computer Science, 2022, 49(2): 204-215. |
|