Computer Science ›› 2024, Vol. 51 ›› Issue (5): 172-178.doi: 10.11896/jsjkx.230200199
• Artificial Intelligence • Previous Articles Next Articles
XU Xuejie, WANG Baohui
CLC Number:
[1]ABDELGAWAD L,KLUEGL P,GENC E,et al.Optimizingneural networks for patent classification[C]//Joint European Conference on Machine Learning and Knowledge Discovery in Databases.Cham:Springer,2020:688-703. [2]LI X,CHEN H,ZHANG Z,et al.Automatic patent classification using citation network information:an experimental study in nanotechnology[C]//Proceedings of the 7th ACM/IEEE-CS Joint Conference on Digital Libraries.2007:419-427. [3]DERIEUX F,BOBEICA M,POIS D,et al.Combining semantics and statistics for patent classification[C]//DBLP.2010. [4]VERBERNE S,D'HONDT E.Patent classification experiments with the Linguistic Classification System LCS in CLEF-IP 2011[C]//CLEF.2011. [5]BAO X,LIU G F,CUI J H.Application of Multi Instance MultiLabel Learning in Chinese Patent Automatic Classification[J].Library and Information Service,2021,65(8):107-113. [6]FALLC J,TÖRCSVÁRI A,BENZINEB K,et al.Automatedcategorization in the international patent classification[J].ACM SIGIR Forum,2003,37(1):10-25. [7]DAI P J,HE C L,SHANYUE Y R.XGBoost-based Classification of Multi-label Texts of Pharmaceutical Patent[J].Journal of Neijiang Normal University,2021,36(10):55-60. [8]HAGHIGHIAN ROUDSARI A,AFSHAR J,LEE W,et al.PatentNet:multi-label classification of patent documents using deep learning based language understanding[J].Scientometrics,2022,127(1):207-231. [9]JUNG G,SHIN J,LEE S.Impact of preprocessing and word embedding on extreme multi-label patent classification tasks[J].Applied Intelligence,2023,53(4):4047-4062. [10]GOMEZ J C,MOENS M F.A survey of automated hierarchical classification of patents[M]//Professional Search in the Modern World.Cham:Springer,2014:215-249. [11]TIAN C,ZHAO Y J.A mapping model of patent and industry category based on similarity:A case study of International Patent Classification and Trade Classification of National Economy[J].Library and Information Service,2016,60(20):123. [12]ELMAN J L.Finding structure in time[J].Cognitive science,1990,14(2):179-211. [13]HOCHREITER S,SCHMIDHUBER J.Long short-term memory[J].Neural computation,1997,9(8):1735-1780. [14]CHO K,VAN MERRIËNBOER B,GULCEHRE C,et al.Learning phrase representations using RNN encoder-decoder for statistical machine translation[J].arXiv:1406.1078,2014. [15]GRAVES A.Generating sequences with recurrent neural networks[J].arXiv:1308.0850,2013. [16]VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[C]//Proceedings of the 31st International Confe-rence on Neural Information Processing SystemsDecember.2017:6000-6010. [17]MIKOLOV T,CHEN K,CORRADO G,et al.Efficient estimation of word representations in vector space[J].arXiv:1301.3781,2013. [18]PENNINGTON J,SOCHER R,MANNING C D.Glove:Global vectors for word representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Proces-sing(EMNLP).2014:1532-1543. [19]DEVLIN J,CHANG M W,LEE K,et al.Bert:Pre-training of deep bidirectional transformers for language understanding[J].arXiv:1810.04805,2018. [20]WOLF T,DEBUT L,SANH V,et al.Huggingface's transfor-mers:State-of-the-art natural language processing[J].arXiv:1910.03771,2019. [21]LIU Y,OTT M,GOYAL N,et al.Roberta:A robustly opti-mized bert pretraining approach[J].arXiv:1907.11692,2019. [22]GRAWE M F,MARTINS C A,BONFANTE A G.Automated patent classification using word embedding[C]//2017 16th IEEE International Conference on Machine Learning and Applications(ICMLA).IEEE,2017:408-411. [23]LI S,HU J,CUI Y,et al.DeepPatent:patent classification with convolutional neural networks and word embedding[J].Scientometrics,2018,117(2):721-744. [24]SHALABY M,STUTZKI J,SCHUBERT M,et al.An lstm approach to patent classification based on fixed hierarchy vectors[C]//Proceedings of the 2018 SIAM International Conference on Data Mining.Society for Industrial and Applied Mathema-tics,2018:495-503. [25]HUANG W,CHEN E,LIU Q,et al.Hierarchical multi-labeltext classification:An attention-based recurrent network approach[C]//Proceedings of the 28th ACM International Confe-rence on Information and Knowledge Management.2019:1051-1060. [26]YAO L,MAO C,LUO Y.Graph convolutional networks fortext classification[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2019,33(1):7370-7377. [27]TANG P,JIANG M,XIA B N,et al.Multi-label patent categorization with non-local attention-based graph convolutional network[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020,34(5):9024-9031. [28]ROUDSARI A H,AFSHAR J,LEE C C,et al.Multi-label patent classification using attention-aware deep learning model[C]//2020 IEEE International Conference on Big Data and Smart Computing(BigComp).IEEE,2020:558-559. [29]GOMEZ J C.Analysis of the effect of data properties in automated patent classification[J].Scientometrics,2019,121(3):1239-1268. [30]LYU L,HAN T.A comparative study of Chinese patent literature automatic classification based on deep learning[C]//2019 ACM/IEEE Joint Conference on Digital Libraries(JCDL).IEEE,2019:345-346. [31]FANG L,ZHANG L,WU H,et al.Patent2Vec:Multi-view representation learning on patent-graphs for patent classification[J].World Wide Web,2021,24(5):1791-1812. [32]SHEN J,QIU W,MENG Y,et al.TaxoClass:Hierarchicalmulti-label text classification using only class names[C]//Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.2021:4239-4249. [33]ZHAO H Y,CAO J,CHEN Q K,et al.Methods for Hierarchical Multi-label Text Classification.Journal of Chinese Computer Systems.2022,43(4):673-683. |
[1] | BAO Kainan, ZHANG Junbo, SONG Li, LI Tianrui. ST-WaveMLP:Spatio-Temporal Global-aware Network for Traffic Flow Prediction [J]. Computer Science, 2024, 51(5): 27-34. |
[2] | ZHANG Jianliang, LI Yang, ZHU Qingshan, XUE Hongling, MA Junwei, ZHANG Lixia, BI Sheng. Substation Equipment Malfunction Alarm Algorithm Based on Dual-domain Sparse Transformer [J]. Computer Science, 2024, 51(5): 62-69. |
[3] | HE Shiyang, WANG Zhaohui, GONG Shengrong, ZHONG Shan. Cross-modal Information Filtering-based Networks for Visual Question Answering [J]. Computer Science, 2024, 51(5): 85-91. |
[4] | SONG Jianfeng, ZHANG Wenying, HAN Lu, HU Guozheng, MIAO Qiguang. Multi-stage Intelligent Color Restoration Algorithm for Black-and-White Movies [J]. Computer Science, 2024, 51(5): 92-99. |
[5] | HE Xiaohui, ZHOU Tao, LI Panle, CHANG Jing, LI Jiamian. Study on Building Extraction from Remote Sensing Image Based on Multi-scale Attention [J]. Computer Science, 2024, 51(5): 134-142. |
[6] | LI Zichen, YI Xiuwen, CHEN Shun, ZHANG Junbo, LI Tianrui. Government Event Dispatch Approach Based on Deep Multi-view Network [J]. Computer Science, 2024, 51(5): 216-222. |
[7] | HONG Tijing, LIU Dengfeng, LIU Yian. Radar Active Jamming Recognition Based on Multiscale Fully Convolutional Neural Network and GRU [J]. Computer Science, 2024, 51(5): 306-312. |
[8] | SUN Jing, WANG Xiaoxia. Convolutional Neural Network Model Compression Method Based on Cloud Edge Collaborative Subclass Distillation [J]. Computer Science, 2024, 51(5): 313-320. |
[9] | CHEN Runhuan, DAI Hua, ZHENG Guineng, LI Hui , YANG Geng. Urban Electricity Load Forecasting Method Based on Discrepancy Compensation and Short-termSampling Contrastive Loss [J]. Computer Science, 2024, 51(4): 158-164. |
[10] | LIN Binwei, YU Zhiyong, HUANG Fangwan, GUO Xianwei. Data Completion and Prediction of Street Parking Spaces Based on Transformer [J]. Computer Science, 2024, 51(4): 165-173. |
[11] | SONG Hao, MAO Kuanmin, ZHU Zhou. Algorithm of Stereo Matching Based on GAANET [J]. Computer Science, 2024, 51(4): 229-235. |
[12] |
XUE Jinqiang, WU Qin.
Progressive Multi-stage Image Denoising Algorithm Combining Convolutional Neural Network and Multi-layer Perceptron [J]. Computer Science, 2024, 51(4): 243-253. |
[13] | HUANG Kun, SUN Weiwei. Traffic Speed Forecasting Algorithm Based on Missing Data [J]. Computer Science, 2024, 51(3): 72-80. |
[14] | ZHENG Cheng, SHI Jingwei, WEI Suhua, CHENG Jiaming. Dual Feature Adaptive Fusion Network Based on Dependency Type Pruning for Aspect-basedSentiment Analysis [J]. Computer Science, 2024, 51(3): 205-213. |
[15] | CHEN Jinyin, LI Xiao, JIN Haibo, CHEN Ruoxi, ZHENG Haibin, LI Hu. CheatKD:Knowledge Distillation Backdoor Attack Method Based on Poisoned Neuronal Assimilation [J]. Computer Science, 2024, 51(3): 351-359. |
|