Computer Science ›› 2024, Vol. 51 ›› Issue (6A): 230500118-10.doi: 10.11896/jsjkx.230500118
• Interdiscipline & Application • Previous Articles Next Articles
DONG Wanqing1, ZHAO Zirong2, LIAO Huimin3, XIAO Hui4, ZHANG Xiaoliang4
CLC Number:
[1]CHEN Q,SONG X,YAMADA H,et al.Learning deep representation from big and heterogeneous data for traffic accident inference[C]//AAAI Conference on Artificial Intelligence,2016:338-344. [2]CHEN C,FAN X,ZHENG C,et al.SDCAE:stack denoisingconvolutional autoencoder model for accident risk prediction via traffic big data[C]//International Conference on Advanced Cloud and Big Data.2018:328-333. [3]REN H.A deep learning approach to the citywide traffic accident risk prediction[C]//2018 21st International Conference on Intelligent Transportation Systems(ITSC).Maui,United States,2018:3346-3351. [4]BAO J,LIU P,UKKUSURI S V.A spatiotemporal deep learning approach for citywide shortterm crash risk prediction with multi-source data[J].Accident Analysis & Prevention,2019,122:239-254. [5]SCARSELLI F,GORI M,TSOI A C,et al.The graph neural network model[J].IEEE Transactions on Neural Networks,2008,20(1):61-80. [6]ZHOU Z,WANG Y,XIE X,et al.RiskOracle:a minutelevel citywide traffic accident forecasting framework[C]//AAAI Conference on Artificial Intelligence.2020. [7]YU L,DU B,HU X,et al.Deep spatio-temporal graph convolutional network for traffic accident prediction[J].Neurocomputing,2021,423:135-147. [8]KIPF T N,WELLING M.Semi-supervised classification withgraph convolutional networks[J].arXiv:1609.02907,2016. [9]MIKOLOV T,KARAFI Á T M,BURGET L,et al.Recurrent neural network based language model[C]//Interspeech.2010:1045-1048. [10]BAI S,KOLTER J Z,KOLTUN V.An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[J].arXiv:1803.01271,2018. [11]VASWANI A,SHAZEER N,PARMAR N,et al.Attention isall you need[J].Advances in Neural Information Processing Systems,2017,30. [12]HOCHREITER S,SCHMIDHUBER J.Long short-term memory[J].Neural Computation,1997,9(8):1735-1780. [13]OORD A,DIELEMAN S,ZEN H,et al.Wavenet:A generative model for raw audio[J].arXiv:1609.03499,2016. [14]BOROVYKH A,BOHTE S,OOSTERLEEC W.Conditionaltime series forecasting with convolutional neural networks[J].arXiv:1703.04691,2017. [15]DEVLIN J,CHANG M W,LEE K,et al.Bert:Pre-training of deep bidirectional transformers for language understanding[J].arXiv:1810.04805,2018 [16]LI Y,YU R,SHAHABI C,et al.Diffusion convolutional recurrent neural network:Data-driven traffic forecasting[J].arXiv:1707.01926,2017. [17]YU B,YIN H,ZHU Z.Spatio-temporal graph convolutional networks:A deep learning framework for traffic forecasting[J].arXiv:1709.04875,2017. [18]CALIENDO C,GUIDA M,PARISI A.A crash-prediction model for multilane roads[J].Accident Analysis & Prevention,2007,39(4):657-670. [19]BERGEL-HAYAT R,DEBBARH M,ANTONIOU C,et al.Explaining the road accident risk:Weather effects[J].Accident Analysis & Prevention,2013,60:456-465. [20]EISENBERG D.The mixed effects of precipitation on trafficcrashes[J].Accident Analysis & Prevention,2004,36(4):637-647. [21]VELIČKOVIĆ P,CUCURULL G,CASANOVA A,et al.Graph attention networks[J].arXiv:1710.10903,2017. [22]WALKER S H,DUNCAN D B.Estimation of the probability of an event as a function of several independent variables[J].Biometrika,1967,54(1/2):167-179. [23]CORTES C,VAPNIK V.Support-vector networks[J].Machine Learning,1995,20(3):273-297. [24]QUINLANJ R.Induction of decision trees[J].Machine Lear-ning,1986,1(1):81-106. [25]CHEN T,GUESTRIN C.Xgboost:A scalable tree boosting system[C]//Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining.2016:785-794. |
[1] | PENG Bo, LI Yaodong, GONG Xianfu, LI Hao. Method for Entity Relation Extraction Based on Heterogeneous Graph Neural Networks and TextSemantic Enhancement [J]. Computer Science, 2024, 51(6A): 230700071-5. |
[2] | LIU Wei, SONG You, ZHUO Peiyan, WU Weiqiang, LIAN Xin. Study on Kcore-GCN Anti-fraud Algorithm Fusing Multi-source Graph Features [J]. Computer Science, 2024, 51(6A): 230600040-7. |
[3] | CHEN Sishuo, WANG Xiaodong, LIU Xiyang. Survey of Breast Cancer Pathological Image Analysis Methods Based on Graph Neural Networks [J]. Computer Science, 2024, 51(6): 172-185. |
[4] | CHU Xiaoxi, ZHANG Jianhui, ZHANG Desheng, SU Hui. Browser Fingerprint Tracking Based on Improved GraphSAGE Algorithm [J]. Computer Science, 2024, 51(6): 409-415. |
[5] | BAO Kainan, ZHANG Junbo, SONG Li, LI Tianrui. ST-WaveMLP:Spatio-Temporal Global-aware Network for Traffic Flow Prediction [J]. Computer Science, 2024, 51(5): 27-34. |
[6] | LU Min, YUAN Ziting. Graph Contrast Learning Based Multi-graph Neural Network for Session-based RecommendationMethod [J]. Computer Science, 2024, 51(5): 54-61. |
[7] | LAN Yongqi, HE Xingxing, LI Yingfang, LI Tianrui. New Graph Reduction Representation and Graph Neural Network Model for Premise Selection [J]. Computer Science, 2024, 51(5): 193-199. |
[8] | ZHANG Liying, SUN Haihang, SUN Yufa , SHI Bingbo. Review of Node Classification Methods Based on Graph Convolutional Neural Networks [J]. Computer Science, 2024, 51(4): 95-105. |
[9] | ZHANG Tao, LIAO Bin, YU Jiong, LI Ming, SUN Ruina. Benchmarking and Analysis for Graph Neural Network Node Classification Task [J]. Computer Science, 2024, 51(4): 132-150. |
[10] | LUO Zeyang, TIAN Hua, DOU Yingtong, LI Manwen, ZHANG Zehua. Fake Review Detection Based on Residual Networks Fusion of Multi-relationship Review Features [J]. Computer Science, 2024, 51(4): 314-323. |
[11] | CHEN Yufeng , HUANG Zengfeng. Framework and Algorithms for Accelerating Training of Semi-supervised Graph Neural Network Based on Heuristic Coarsening Algorithms [J]. Computer Science, 2024, 51(3): 48-55. |
[12] | HUANG Kun, SUN Weiwei. Traffic Speed Forecasting Algorithm Based on Missing Data [J]. Computer Science, 2024, 51(3): 72-80. |
[13] | CHEN Wei, ZHOU Lihua, WANG Yafeng, WANG Lizhen, CHEN Hongmei. Community Search Based on Disentangled Graph Neural Network in Heterogeneous Information Networks [J]. Computer Science, 2024, 51(3): 90-101. |
[14] | ZHANG Guohao, WANG Yi, ZHOU Xi, WANG Baoquan. Deep Collaborative Truth Discovery Based on Variational Multi-hop Graph Attention Encoder [J]. Computer Science, 2024, 51(3): 109-117. |
[15] | ZHENG Cheng, SHI Jingwei, WEI Suhua, CHENG Jiaming. Dual Feature Adaptive Fusion Network Based on Dependency Type Pruning for Aspect-basedSentiment Analysis [J]. Computer Science, 2024, 51(3): 205-213. |
|