Computer Science ›› 2024, Vol. 51 ›› Issue (7): 278-286.doi: 10.11896/jsjkx.230500059
• Artificial Intelligence • Previous Articles Next Articles
MAO Xingjing1, WEI Yong2, YANG Yurui1, JU Shenggen1
CLC Number:
[1]HEWETT F,STEDE M.Extractive Summarisation for German-language Data:A Text-level Approach with Discourse Features [C]//Proceedings of the 29th International Conference on Computational Linguistics.International Committee on Computational Linguistics,2022:756-765. [2]LI J,ZHANG C,CHEN X,et al.Survey on Automatic Text Summarization [J].Journal of Computer Research and Development,2021,58(1):1-21. [3]LIU Y,LIU P,RADEV D,et al.2022.BRIO:Bringing Order to Abstractive Summarization[C]//Proceedings of the 60th An-nual Meeting of the Association for Computational Linguistics(Volume 1:Long Papers).Association for Computational Linguistics,2022:2890-2903. [4]LIU X,WANG H,WU J.GAN and Chinese WordNet Based Text Summarization Technology [J].Computer Science,2022,49(12):301-304. [5]MIKOLOV T,KARAFIÁT M,BURGET L,et al.Recurrentneural network based language model[C]//INTERSPEECH-11th Annual Conference of the International Speech Communication Association.2010:1045-1048. [6]VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[C]//Advances in Neural Information Processing Systems.2017:5998-6008. [7]GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Ge-nerative adversarial networks[J].Communications of the ACM,2020,63(11):139-144. [8]HE J,KRYSCINSKI W,MCCANN B,et al.CTRLsum:To-wards Generic Controllable Text Summarization[C]//Procee-dings of the 2022 Conference on Empirical Methods in Natural Language Processing.Association for Computational Linguistics,2022:5879-5915. [9]LI H,ZHU J,ZHANG J,et al.Keywords-Guided Abstractive Sentence Summarization[C]//Proceedings of the AAAI Confe-rence on Artificial Intelligence.2020:8196-8203. [10]CAO Z,WEI F,LI W,et al.Faithful to the Original:Fact Aware Neural Abstractive Summarization[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2018. [11]LI W,XIAO X,LIU J,et al.Leveraging Graph to Improve Abstractive Multi-Document Summarization [C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.Association for Computational Linguistics,2020:6232-6243. [12]FENG X,FENG X,QIN B.Incorporating CommonsenseKnowledge into Abstractive Dialogue Summarization via Hete-rogeneous Graph Networks[C]//China National Conference on Chinese Computational Linguistics.Springer,CCL 2021:Chinese Computational Linguistics,2021:127-142. [13]NALLAPATI R,ZHOU B,SANTOS C,et al.Abstractive Text Summarization using Sequence-to-sequence RNNs and Beyond[C]//Proceedings of the 20th SIGNLL Conference on Computational Natural Language Learning.Association for Computa-tional Linguistics,2016:280-290. [14]NARAYAN S,COHEN S,LAPATA M.Don't Give Me the Details,Just the Summary! Topic-Aware Convolutional Neural Networks for Extreme Summarization[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing.Association for Computational Linguistics,2018:1997-1807. [15]LIN C.ROUGE:A Package for Automatic Evaluation of Summaries[C]//Text Summarization Branches Out.Association for Computational Linguistics,2004:74-81. [16]SEE A,LIU P,MANNING C.Get To The Point:Summariza-tion with Pointer-Generator Networks[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics(Volume 1:Long Papers).Association for Computa-tional Linguistics,2017:1073-1083. [17]DOU Z,LIU P,HAYASHI H,et al.GSum:A General Framework for Guided Neural Abstractive Summarization[C]//Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.Association for Computational Linguistics,2021:4830-4842. [18]DEVLIN J,CHANG M,LEE K,et al.BERT:Pre-training ofDeep Bidirectional Transformers for Language Understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies,Volume 1(Long and Short Papers).Association for Computational Linguistics,2019:4171-4186. [19]LEWIS M,LIU Y,GOYAL N,et al.BART:Denoising Se-quence-to-Sequence Pre-training for Natural Language Generation,Translation,and Comprehension[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.Association for Computational Linguistics,2020:7871-7880. [20]LIU Y,OTT M,GOYAL N,et al.Roberta:A robustly opti-mizedbert pretraining approach[EB/OL].(2019-07-26) [2022-07-28].https://doi.org/10.48550/arXiv.1907.11692. [21]XU W,LI C,LEE M,et al.Multi-task learning for abstractive text summarization with key information guide network[J/OL].EURASIP Journal on Advances in Signal Processing 2020.https://doi.org/10.1186/s13634-020-00674-7. [22]GUAN S,ZHU P,WEI Z.Knowledge and Keywords Augmented Abstractive Sentence Summarization[C]//Proceedings of the Third Workshop on New Frontiers in Summarization,Online and in Dominican Republic.Association for Computational Linguistics.2021:25-32. [23]HE J,KRYSCINSKI W,MCCANN B,et al.CTRLsum:To-wards Generic Controllable Text Summarization[C]//Procee-dings of the 2022 Conference on Empirical Methods in Natural Language Processing,Abu Dhabi,United Arab Emirates.Association for Computational Linguistics.2022:5879-5915. [24]MIHALCEA R,TARAU P.Textrank:Bringing Order into Text [C]//Empirical Methods in Natural Language Processing(EMNLP).ACL,2004:404-411. [25]ERKAN G,RADEV D R.Lexrank:Graph-based Lexical Centrality as Salience in Text Summarization [J].Journal of Artificial Intelligence Research,2004,22,457-479. [26]WAN X,XIAO J.Single Document Keyphrase Extraction Using Neighborhood Knowledge [C]//Proceedings of the AAAI Conference on Artificial Intelligence.AAAI,2008:855-860. [27]KIPF T,WELLING M.Semi-Supervised Classification withGraph Convolutional Networks[C]//Proceedings of the 5th International Conference on Lear-ning Representations.ICLR 2017. [28]YASUNAGA M,ZHANG R,MEELU K,et al.Graph-basedNeural Multi-Document Summarization[C]//Proceedings of the 21st Conference on Computational Natural Language Learning(CoNLL 2017).Vancouver,Canada:Association for Computational Linguistics,2017:452-462. [29]WANG D,LIU P,ZHENG Y,et al.Heterogeneous graph neuralnetworks for extractive document summarization[C]//Procee-dings of the 58th Annual Meeting of the Association for Computational Linguistics,Online.Association for Computational Linguistics:2020:6209-6219. [30]JIN H,WANG T,WAN X.Semsum:Semantic dependencyguided neural abstractive summarization[C]//Proceedings of the AAAI Conference on Artificial Intelligence.AAAI,2020:8026-8033. [31]GROOTENDORST M.KeyBERT:Minimal keyword extraction with BERT[EB/OL].https://doi.org/10.5281/zenodo.4461265. [32]LI C,XU W,LI S,et al.Guiding Generation for AbstractiveText Summarization Based on Key Information Guide Network[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies,Volume 2(Short Papers),New Orleans,Louisiana.Association for Computational Linguistics.2018:55-60. [33]KEDZIORSKI R,BEKAL D,LUAN Y,et al.Text Generation from Knowledge Graphs with Graph Transformers[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.Association for Computational Linguistics,2019:2284-2293. [34]LIU Y,LAPATA M.Text Summarization with Pretrained Encoders[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing(EMNLP-IJCNLP).ACL,2019:3730-3740. [35]SONG K,TAN X,QIN T,et al.MASS:Masked Sequence to Sequence Pre-training for Language Generation[C]//International Conference on Machine Learning.PMLR,2019:5926-5936. [36]ZHANG J,ZHAO Y,SALEH M,et al.Pegasus:Pre-training with extracted gap sentences for abstractive summarization[C]//Proceedings of the 37th International Conference on Machine Learning(ICML'20).JMLR.org,2020:11328-11339. [37]JI X,ZHAO W.SKGSUM:Abstractive Document Summarization with Semantic Knowledge Graphs[C]//2021 International Joint Conference on Neural Networks(IJCNN).Shenzhen,China,2021:1-8. [38]JIANG M,ZOU Y,XU J,et al.GATSum:Graph-Based Topic-Aware Abstract Text Summarization[J].Information Technology and Control,2022:51(2),345-355. |
[1] | YAN Qiuyan, SUN Hao, SI Yuqing, YUAN Guan. Multimodality and Forgetting Mechanisms Model for Knowledge Tracing [J]. Computer Science, 2024, 51(7): 133-139. |
[2] | PENG Bo, LI Yaodong, GONG Xianfu, LI Hao. Method for Entity Relation Extraction Based on Heterogeneous Graph Neural Networks and TextSemantic Enhancement [J]. Computer Science, 2024, 51(6A): 230700071-5. |
[3] | HOU Lei, LIU Jinhuan, YU Xu, DU Junwei. Review of Graph Neural Networks [J]. Computer Science, 2024, 51(6): 282-298. |
[4] | WANG Xiaolong, WANG Yanhui, ZHANG Shunxiang, WANG Caiqin, ZHOU Yuhao. Gender Discrimination Speech Detection Model Fusing Post Attributes [J]. Computer Science, 2024, 51(6): 338-345. |
[5] | ZHANG Zebao, YU Hannan, WANG Yong, PAN Haiwei. Combining Syntactic Enhancement with Graph Attention Networks for Aspect-based Sentiment Classification [J]. Computer Science, 2024, 51(5): 200-207. |
[6] | PAN Lei, LIU Xin, CHEN Junyi, CHENG Zhangtao, LIU Leyuan, ZHOU Fan. Event Prediction Based on Dynamic Graph with Local Data Augmentation [J]. Computer Science, 2024, 51(3): 118-127. |
[7] | SUN Shounan, WANG Jingbin, WU Renfei, YOU Changkai, KE Xifan, HUANG Hao. TMGAT:Graph Attention Network with Type Matching Constraint [J]. Computer Science, 2024, 51(3): 235-243. |
[8] | LIAO Jinzhi, ZHAO Hewei, LIAN Xiaotong, JI Wenliang, SHI Haiming, ZHAO Xiang. Contrastive Graph Learning for Cross-document Misinformation Detection [J]. Computer Science, 2024, 51(3): 14-19. |
[9] | WU Jiawei, FANG Quan, HU Jun, QIAN Shengsheng. Pre-training of Heterogeneous Graph Neural Networks for Multi-label Document Classification [J]. Computer Science, 2024, 51(1): 143-149. |
[10] | YANG Zhizhuo, XU Lingling, Zhang Hu, LI Ru. Answer Extraction Method for Reading Comprehension Based on Frame Semantics and GraphStructure [J]. Computer Science, 2023, 50(8): 170-176. |
[11] | SHAN Xiaohuan, SONG Rui, LI Haihai, SONG Baoyan. Event Recommendation Method with Multi-factor Feature Fusion in EBSN [J]. Computer Science, 2023, 50(7): 60-65. |
[12] | ZHANG Tao, CHENG Yifei, SUN Xinxu. Graph Attention Networks Based on Causal Inference [J]. Computer Science, 2023, 50(6A): 220600230-9. |
[13] | ZHANG Hu, ZHANG Guangjun. Document-level Event Extraction Based on Multi-granularity Entity Heterogeneous Graph [J]. Computer Science, 2023, 50(5): 255-261. |
[14] | DONG Yongfeng, HUANG Gang, XUE Wanruo, LI Linhao. Graph Attention Deep Knowledge Tracing Model Integrated with IRT [J]. Computer Science, 2023, 50(3): 173-180. |
[15] | LI Junlin, OUYANG Zhi, DU Nisuo. Scene Text Detection with Improved Region Proposal Network [J]. Computer Science, 2023, 50(2): 201-208. |
|