Computer Science ›› 2024, Vol. 51 ›› Issue (7): 405-412.doi: 10.11896/jsjkx.230500012
• Information Security • Previous Articles Next Articles
WANG Jinghong1,2,3, TIAN Changshen1,2,3, LI Haokang4, WANG Wei1,3
CLC Number:
[1]CHANG H,SHOKRI R.On the privacy risks of algorithmicfairness[C]//2021 IEEE European Symposium on Security and Privacy(EuroS&P).IEEE,2021:292-303. [2]FARRAND T,MIRESHGHALLAH F,SINGH S,et al.Neither private nor fair:Impact of data imbalance on utility and fairness in differential privacy[C]//Proceedings of the 2020 Workshop on Privacy-preserving Machine Learning in Practice.Association for Computing Machinery,2020:15-19. [3]LIN Y,BAO L Y,LI Z M H,et al.Differential privacy protection over deep learning:An investigation of its impacted factors[J].Computers & Security,2020,99:102061. [4]GARCIA V,BRUNA J.Few-shot learning with graph neuralnetworks[J].arXiv:1711.04043,2017. [5]MIRONOV I.Rényi differential privacy[C]//2017 IEEE 30th Computer Security Foundations Symposium.IEEE,2017:263-275. [6]DWORK C.Differential privacy [C]//Proceedings of the 33rd International Colloquium on Automata,Languages and Programming(ICALP),Part II.2006:1-12. [7]ABADI M,CHU A,GOODFELLOW I,et al.Deep learning withdifferential privacy[C]//Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security.ACM,2016:308-318. [8]FELDMAN V,ZRNIC T.Individual privacy accounting via aRényi filter[C]//Advances in neural information processing systems.New York:Curran Associates,Inc.2021:28080-28091. [9]DU M N,YANG F,ZOU N,et al.Fairness in deep learning:a computational perspective[J].IEEE Intelligent Systems,2021,4(36):25-34. [10]ZHANG T,ZHU T,LI J,et al.Fairness in semi-supervisedlearning:Unlabeled data help to reduce discrimination[J].IEEE Transactions on Knowledge and Data Engineering,2020,34(4):1763-1774. [11]ZAFAR M B,VALERA I,ROGRIGUEZ M G,et al.Fairnessconstraints:Mechanisms for fair classification[C]//Artificial Intelligence and Statistics.PMLR,2017:962-970. [12]LIANG Y,CHEN C,TIAN T,et al.Joint Adversarial Learning for Cross-domain Fair Classification[J].arXiv:2206.03656,2022. [13]DU M,YANG F,ZOU N,et al.Fairness in deep learning:A computational perspective[J].IEEE Intelligent Systems,2020,36(4):25-34. [14]PENG Y C,QIN X I,ZHANG L G,et al.Survey on Few-shot Learning Algorithms for Image Classification[J].Computer Science,2022,49(5):1-9. [15]LU J Y,LING X H,LIU Q,et al.Meta-reinforcement Learning Algorithm Based on Automating Policy Entropy[J].Computer Science,2021,48(6):168-174. [16]VINYALS O,BLUNDELL C,LILLICRAP T,et al.Ma-tching networks for one shot learning[J].Advances in Neural Information Processing Systems,2016,29:3630-3638. [17]TRIANTAFILLOU E,ZHU T,DUMOULIN V,et al.Meta-dataset:A dataset of datasets for learning to learn from few examples[J].arXiv:1903.03096,2019. [18]TSIMPOUKELLI M,MENICK J L,CABI S,et al.Multimodal few-shot learning with frozen language models[J].Advances in Neural Information Processing Systems,2021,34:200-212. [19]SNELL J,SWERSKY K,ZEMEL R.Prototypical networks for few-shot learning[J].Advances in Neural Information Proces-sing Systems,2017,30:4077-4087. [20]RAVI S,LAROCHELLE H.Optimization as a model for few-shot learning[C]//International Conference on Learning Representations.2017. [21]JAMAL M A,QI G J.Task-agnostic meta-learning for few-shot learning[C]//Conference on Computer Vision and Pattern Recognition.IEEE,2019:11719-11727. [22]FINN C,ABBEEL P,LEVINE S.Model-agnostic meta-learning for fast adaptation of deep networks[C]//International Confe-rence on Machine Learning.PMLR,2017:1126-1135. [23]ABBAS M,XIAO Q,CHEN L,et al.Sharp-MAML:Sharpness-Aware Model-Agnostic Meta Learning[C]//International Conference on Machine Learning.PMLR,2022:10-32. [24]LI J,KHODAK M,CALDAS S,et al.Differentially private meta-learning[J].arXiv:1909.05830,2019. [25]SLACK D,FRIEDLER S A,GIVENTAL E.Fairness warnings and Fair-MAML:learning fairly with minimal data[C]//Proceedings of the 2020 Conference on Fairness,Accountability,and Transparency.ACM,2020:200-209. [26]ZHAO C,CHEN F,WANG Z,et al.A primal-dual subgradient approach for fair meta learning[C]//2020 IEEE International Conference on Data Mining(ICDM).IEEE,2020:821-830. [27]JAGIELSKI M,KEARNS M,MAO J M,et al.Differenially private fair learning[C]//International Conference on Machine Learning.PMLR,2019:3000-3008. [28]FIORETTO F,MAK T W K,VAN HENTENRYCK P.Predicting ac optimal power flows:Combining deep learning and lagrangian dual methods[C]//Proceedings of the AAAI Confe-rence on Artificial Intelligence.2020:630-637. [29]TRAN C,FIORETTO F,VAN HENTENRYCK P.Differen-tially private and fair deep learning:A lagrangian dual approach[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2021,35(11):9932-9939. [30]DU M,MUKHERJEE S,WANG G,et al.Fairness via representation neutralization[J].Advances in Neural Information Processing Systems,2021,34:12091-12103. [31]BECHAVOD Y,LIGETT K.Penalizing unfairness in binaryclassification[J].arXiv:1707.00044,2017. [32]XIE Y,WANG H,YU B,et al.Secure collaborative few-shot learning[J].Knowledge-Based Systems,2020,203:106157. |
[1] | YANG Xuhua, ZHANG Lian, YE Lei. Adaptive Context Matching Network for Few-shot Knowledge Graph Completion [J]. Computer Science, 2024, 51(5): 223-231. |
[2] | ZENG Wu, MAO Guojun. Few-shot Learning Method Based on Multi-graph Feature Aggregation [J]. Computer Science, 2023, 50(6A): 220400029-10. |
[3] | HUA Jie, LIU Xueliang, ZHAO Ye. Few-shot Object Detection Based on Feature Fusion [J]. Computer Science, 2023, 50(2): 209-213. |
[4] | PENG Yun-cong, QIN Xiao-lin, ZHANG Li-ge, GU Yong-xiang. Survey on Few-shot Learning Algorithms for Image Classification [J]. Computer Science, 2022, 49(5): 1-9. |
[5] | GUO Jun-cheng, WAN Gang, HU Xin-jie, WANG Shuai, YAN Fa-bao. Study on Solar Radio Burst Event Detection Based on Transfer Learning [J]. Computer Science, 2022, 49(11A): 210900198-7. |
[6] | FANG Zhong-li, WANG Zhe, CHI Zi-qiu. Dual-stream Reconstruction Network for Multi-label and Few-shot Learning [J]. Computer Science, 2022, 49(1): 212-218. |
[7] | WANG Hang, CHEN Xiao, TIAN Sheng-zhao, CHEN Duan-bing. SAR Image Recognition Based on Few-shot Learning [J]. Computer Science, 2020, 47(5): 124-128. |
[8] | LV Yong-qiang,MIN Wei-qing,DUAN Hua,JIANG Shu-qiang. Few-shot Food Recognition Combining Triplet Convolutional Neural Network with Relation Network [J]. Computer Science, 2020, 47(1): 136-143. |
|