Computer Science ›› 2022, Vol. 49 ›› Issue (1): 212-218.doi: 10.11896/jsjkx.201100143
• Computer Graphics & Multimedia • Previous Articles Next Articles
FANG Zhong-li, WANG Zhe, CHI Zi-qiu
CLC Number:
[1]DENG J,DONG W,SOCHER R,et al.Imagenet:A large-scale hierarchical image database[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2009:248-255. [2]CHEN T R,LING J.Differential Privacy Protection MachineLearning Method Based on Features Mapping[J].Computer Science,2021,48(7):33-39. [3]WANG Q,JIA N,BRECKON T P.A baseline for multi-label image classification using an ensemble deep CNN[J].IEEE International Conference on Image Processing(ICIP),2019. [4]WEI Y,XIA W,LIN M,et al.HCP:A flexible CNN framework for multi-label image classification[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,38(9):1901-1907. [5]WANG J,YANG Y,MAO J,et al.Cnn-rnn:A unified frame-work for multi-label image classification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:2285-2294. [6]YANG T,CHAN A B.Learning dynamic memory networks for object tracking[C]//Proceedings of the European Conference on Computer Vision (ECCV).2018:152-167. [7]YANG Z,HE X,GAO J,et al.Stacked attention networks for image question answering[C]//Proceedings of the IEEE Confe-rence on Computer Vision and Pattern Recognition.2016:21-29. [8]REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:Unified,real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:779-788. [9]WANG P,CHEN P,YUAN Y,et al.Understanding convolution for semantic segmentation[C]//2018 IEEE Winter Conference on Applications of Computer vision (WACV).IEEE,2018:1451-1460. [10]ZHU F,LI H,OUYANG W,et al.Learning spatial regularization with image-level supervisions for multi-label image classification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:5513-5522. [11]WANG Z,CHEN T,LI G,et al.Multi-label image recognition by recurrently discovering attentional regions[C]//Proceedings of the IEEE International Conference on Computer Vision.2017:464-472. [12]EVERINGHAM M,VAN GOOL L,WILLIAMS C K I,et al.The pascal visual object classes (voc) challenge[J].Internatio-nal Journal of Computer Vision,2010,88(2):303-338. [13]LIN T Y,MAIRE M,BELONGIE S,et al.Microsoft coco:Common objects in context[C]//European Conference on Computer Vision.Cham:Springer,2014:740-755. [14]WU B,CHEN W,FAN Y,et al.Tencent ml-images:A large-scale multi-label image database for visual representation lear-ning[J].IEEE Access,2019,7:172683-172693. [15]GUO H,ZHENG K,FAN X,et al.Visual attention consistency under image transforms for multi-label image classification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2019:729-739. [16]LUO Y,JIANG M,ZHAO Q.Visual attention in multi-labelimage classification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops.2019. [17]DEMBCZYHSKI K,WAEGEMAN W,CHENG W,et al.On label dependence and loss minimization in multi-label classification[J].Machine Learning,2012,88(1/2):5-45. [18]NAM J,MENCÍA E L,KIM H J,et al.Maximizing subset accuracy with recurrent neural networks in multi-label classification[J].Advances in Neural Information Processing Systems,2017,30:5413-5423. [19]WANG Y,WANG S, TANG J,et al.Ppp:Joint pointwise and pairwise image label prediction[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:6005-6013. [20]DECUBBER S,MORTIER T,DEMBCZYHSKI K,et al.Deepf-measure maximization in multi-label classification:A comparative study[C]//Joint European Conference on Machine Learning and Knowledge Discovery in Databases.Cham:Springer,2018:290-305. [21]WU X Z,ZHOU Z H.A unified view of multi-label performance measures[C]//International Conference on Machine Learning.PMLR,2017:3780-3788. [22]LI Y,SONG Y,LUO J.Improving pairwise ranking for multi-label image classification[C]//Proceedings of the IEEE Confe-rence on Computer Vision and Pattern Recognition.2017:3617-3625. [23]ELISSEEFF A,WESTON J.A kernel method for multi-labelled classification[C]//Advances in Neural Information Processing Systems.2002:681-687. [24]SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[J].arXiv:1409.1556,2014. [25]HARZALLAH H,JURIE F,SCHMID C.Combining efficientobject localization and image classification[C]//2009 IEEE 12th International Conference on Computer Vision.IEEE,2009:237-244. [26]DONG J,XIA W,CHEN Q,et al.Subcategory-aware object clas-sification[C]//Proceedings of the IEEE Conference on Compu-ter Vision and Pattern Recognition.2013:827-834. [27]SONG Z,CHEN Q,HUANG Z,et al.Contextualizing object detection and classification[C]//CVPR 2011.IEEE,2011:1585-1592. [28]LYU F,WU Q,HU F,et al.Attend and imagine:Multi-labelimage classification with visual attention and recurrent neural networks[J].IEEE Transactions on Multimedia,2019,21(8):1971-1981. [29]ZHANG J,WU Q,SHEN C,et al.Multi-label image classification with regional latent semantic dependencies[J].IEEE Transa-ctions on Multimedia,2018,20(10):2801-2813. [30]GONG Y,JIA Y,LEUNG T,et al.Deep convolutional ranking for multilabel image annotation[J].arXiv:1312.4894,2013. |
[1] | RAO Zhi-shuang, JIA Zhen, ZHANG Fan, LI Tian-rui. Key-Value Relational Memory Networks for Question Answering over Knowledge Graph [J]. Computer Science, 2022, 49(9): 202-207. |
[2] | TANG Ling-tao, WANG Di, ZHANG Lu-fei, LIU Sheng-yun. Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy [J]. Computer Science, 2022, 49(9): 297-305. |
[3] | XU Yong-xin, ZHAO Jun-feng, WANG Ya-sha, XIE Bing, YANG Kai. Temporal Knowledge Graph Representation Learning [J]. Computer Science, 2022, 49(9): 162-171. |
[4] | WANG Jian, PENG Yu-qi, ZHAO Yu-fei, YANG Jian. Survey of Social Network Public Opinion Information Extraction Based on Deep Learning [J]. Computer Science, 2022, 49(8): 279-293. |
[5] | HAO Zhi-rong, CHEN Long, HUANG Jia-cheng. Class Discriminative Universal Adversarial Attack for Text Classification [J]. Computer Science, 2022, 49(8): 323-329. |
[6] | JIANG Meng-han, LI Shao-mei, ZHENG Hong-hao, ZHANG Jian-peng. Rumor Detection Model Based on Improved Position Embedding [J]. Computer Science, 2022, 49(8): 330-335. |
[7] | SUN Qi, JI Gen-lin, ZHANG Jie. Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection [J]. Computer Science, 2022, 49(8): 172-177. |
[8] | HU Yan-yu, ZHAO Long, DONG Xiang-jun. Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification [J]. Computer Science, 2022, 49(7): 73-78. |
[9] | CHENG Cheng, JIANG Ai-lian. Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction [J]. Computer Science, 2022, 49(7): 120-126. |
[10] | HOU Yu-tao, ABULIZI Abudukelimu, ABUDUKELIMU Halidanmu. Advances in Chinese Pre-training Models [J]. Computer Science, 2022, 49(7): 148-163. |
[11] | ZHOU Hui, SHI Hao-chen, TU Yao-feng, HUANG Sheng-jun. Robust Deep Neural Network Learning Based on Active Sampling [J]. Computer Science, 2022, 49(7): 164-169. |
[12] | SU Dan-ning, CAO Gui-tao, WANG Yan-nan, WANG Hong, REN He. Survey of Deep Learning for Radar Emitter Identification Based on Small Sample [J]. Computer Science, 2022, 49(7): 226-235. |
[13] | LIU Wei-ye, LU Hui-min, LI Yu-peng, MA Ning. Survey on Finger Vein Recognition Research [J]. Computer Science, 2022, 49(6A): 1-11. |
[14] | SUN Fu-quan, CUI Zhi-qing, ZOU Peng, ZHANG Kun. Brain Tumor Segmentation Algorithm Based on Multi-scale Features [J]. Computer Science, 2022, 49(6A): 12-16. |
[15] | KANG Yan, XU Yu-long, KOU Yong-qi, XIE Si-yu, YANG Xue-kun, LI Hao. Drug-Drug Interaction Prediction Based on Transformer and LSTM [J]. Computer Science, 2022, 49(6A): 17-21. |
|