Computer Science ›› 2024, Vol. 51 ›› Issue (8): 45-55.doi: 10.11896/jsjkx.230900107
• Database & Big Data & Data Science • Previous Articles Next Articles
XIN Bo, DING Zhijun
CLC Number:
[1]BASTANI K,ASGARI E,NAMAVARI H.Wide and deeplearning for peer-to-peer lending[J].Expert Systems with Applications,2019,134:209-224. [2]LESSMANN S,BAESENS B,SEOW H V,et al.Benchmarking state-of-the-art classification algorithms for credit scoring:An update of research[J].European Journal of Operational Research,2015,247(1):124-136. [3]GOMES H M,GRZENDA M,MELLO R F D,et al.A Survey on Semi-supervised Learning for Delayed Partially Labelled Data Streams[J].ACM Computing Surveys,2022,55(4):1-42. [4]TAN F,HOU X,ZHANG J,et al.A Deep Learning Approach to Competing Risks Representation in Peer-to-Peer Lending[J].IEEE transactions on neural networks and learning systems,2018,30(5):1565-1574. [5]DU M,LIU N,HU X.Techniques for interpretable machinelearning[J].Communications of the ACM,2019,63(1):68-77. [6]JIAO L,YANG H,LIU Z G,et al.Interpretable fuzzy clustering using unsupervised fuzzy decision trees[J].Information Sciences,2022,611:540-563. [7]LIU H,ZHOU Y,LIU B,et al.Incremental learning with neural networks for computer vision:a survey[J].Artificial Intelligence Review,2023,56(5):4557-4589. [8]YU Z,WANG D,ZHAO Z,et al.Hybrid Incremental Ensemble Learning for Noisy Real-World Data Classification[J].IEEE transactions on cybernetics,2017,49(2):403-416. [9]DYER K B,CAPO R,POLIKAR R.COMPOSE:A Semisupervised Learning Framework for Initially Labeled Nonstationary Streaming Data[J].IEEE transactions on neural networks and learning systems,2013,25(1):12-26. [10]GAO H,DING Z.A Novel Machine Learning Method for De-layed Labels [C]//2022 IEEE International Conference on Networking,Sensing and Control(ICNSC).IEEE,2022:1-6. [11]KUNCHEVA L I,SáNCHEZ J S.Nearest Neighbour Classifiers for Streaming Data with Delayed Labelling[C]//2008 Eighth IEEE International Conference on Data Mining.IEEE,2008:869-874. [12]GAO H,DING Z,PAN M.Incremental Learning Method for Data with Delayed Labels[J].Computing and Informatics,2022,41(5):1260-1283. [13]POZZOLO A D,BORACCHI G,CAELEN O,et al.Credit Card Fraud Detection:A Realistic Modeling and a Novel Learning Strategy[J].IEEE transactions on neural networks and learning systems,2017,29(8):3784-3797. [14]DAS M,PRATAMA M,ZHANG J,et al.A Skip-ConnectedEvolving Recurrent Neural Network for Data Stream Classification under Label Latency Scenario[C]//Proceedings of the AAAI Conference on Artificial Intelligence.AAAI,2020:3717-3724. [15]GUNNARSSON B R,BROUCKE S V,BAESENS B,et al.Deep learning for credit scoring:Do or don’t?[J].European Journal of Operational Research,2021,295(1):292-305. [16]RIBEIRO M T,SINGH S,GUESTRIN C.“Why Should I Trust You?”[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.ACM,2016:1135-1144. [17]LUNDBERG S M,ERION G G,CHEN H,et al.From local explanations to global understanding with explainable AI for trees[J].Nature Machine Intelligence,2020,2(1):56-67. [18]DONG L A,YE X,YANG G.Two-stage rule extraction method based on tree ensemble model for interpretable loan evaluation[J].Information Sciences,2021,573:46-64. [19]ALANGARI N,MENAI M E,MATHKOUR H,et al.Intrinsically Interpretable Gaussian Mixture Model[J].Information,2023,14(3):164. [20]DOMINGOS P,HULTEN G.Mining high-speed data streams[C]//Proceedings of the sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.ACM,2000:71-80. [21]POTTS D,SAMMUT C.Incremental Learning of Linear Model Trees[J].Machine Learning,2005,61(1/2/3):5-48. [22]HAUG J,BROELEMANN K,KASNECI G.Dynamic ModelTree for Interpretable Data Stream Learning[C]//2022 IEEE 38th International Conference on Data Engineering(ICDE).IEEE,2022:2562-2574. [23]BROELEMANN K,KASNECI G.A Gradient-Based Split Criterion for Highly Accurate and Transparent Model Trees[C]//Proceedings of the Twenty-Eighth International Joint Confe-rence on Artificial Intelligence.IJCAI,2019:2030-7. [24]GRZENDA M,GOMES H M,BIFET A.Delayed labelling eva-luation for data streams[J].Data Mining and Knowledge Disco-very,2020,34(5):1237-1266. [25]STREET W N,KIM Y.A streaming ensemble algorithm(SEA) for large-scale classification[C]//Proceedings of the seventh ACM SIGKDD International Conference on Knowledge Disco-very and Data Mining.ACM,2001:377-382. [26]HULTEN G,SPENCER L,DOMINGOS P.Mining time-chan-ging data streams[C]//Proceedings of the seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.ACM,2001:97-106. [27]AGRAWAL R,IMIELINSKI T,SWAMI A N.Database Mi-ning:A Performance Perspective [J].IEEE Transactions on Knowledge and Data Engineering,1993,5(6):914-925. [28]IKONOMOVSKA E,GAMA J,DZEROSKI S.Learning model trees from evolving data streams[J].Data Mining and Know-ledge Discovery,2011,23:128-168. [29]MANAPRAGADA C,WEBB G I,SALEHI M.Extremely Fast Decision Tree [C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mi-ning.ACM,2018:1953-1962. [30]GOMES H M,BIFET A,READ J,et al.Adaptive random fo-rests for evolving data stream classification[J].Machine Lear-ning,2017,106:1469-1495. |
[1] | QIAO Fan, WANG Peng, WANG Wei. Multivariate Time Series Classification Algorithm Based on Heterogeneous Feature Fusion [J]. Computer Science, 2024, 51(2): 36-46. |
[2] | HUANG Yuhang, SONG You, WANG Baohui. Improved Forest Optimization Feature Selection Algorithm for Credit Evaluation [J]. Computer Science, 2023, 50(6A): 220600241-6. |
[3] | WANG Dongli, YANG Shan, OUYANG Wanli, LI Baopu, ZHOU Yan. Explainability of Artificial Intelligence:Development and Application [J]. Computer Science, 2023, 50(6A): 220600212-7. |
[4] | YANG Bin, LIANG Jing, ZHOU Jiawei, ZHAO Mengci. Study on Interpretable Click-Through Rate Prediction Based on Attention Mechanism [J]. Computer Science, 2023, 50(5): 12-20. |
[5] | CHEN Chong, CHEN Jie, ZHANG Hui, CAI Lei, XUE Yaru. Review on Interpretability of Deep Learning [J]. Computer Science, 2023, 50(5): 52-63. |
[6] | LI Xiang, FAN Zhiguang, LI Xuexiang, ZHANG Weixing, YANG Cong, CAO Yangjie. Survey of Visual Question Answering Based on Deep Learning [J]. Computer Science, 2023, 50(5): 177-188. |
[7] | DONG Yongfeng, HUANG Gang, XUE Wanruo, LI Linhao. Graph Attention Deep Knowledge Tracing Model Integrated with IRT [J]. Computer Science, 2023, 50(3): 173-180. |
[8] | LI Weizhuo, LU Bingjie, YANG Junming, NA Chongning. Study on Abductive Analysis of Auto Insurance Fraud Based on Network Representation Learning [J]. Computer Science, 2023, 50(2): 300-309. |
[9] | WANG Shaojiang, LIU Jia, ZHENG Feng, PAN Yicheng. Survey on Hierarchical Clustering for Machine Learning [J]. Computer Science, 2023, 50(1): 9-17. |
[10] | CHEN Yijun, GAO Haoran, DING Zhijun. Credit Evaluation Model Based on Dynamic Machine Learning [J]. Computer Science, 2023, 50(1): 59-68. |
[11] | WANG Ming, WU Wen-fang, WANG Da-ling, FENG Shi, ZHANG Yi-fei. Generative Link Tree:A Counterfactual Explanation Generation Approach with High Data Fidelity [J]. Computer Science, 2022, 49(9): 33-40. |
[12] | ZHAO Lu, YUAN Li-ming, HAO Kun. Review of Multi-instance Learning Algorithms [J]. Computer Science, 2022, 49(6A): 93-99. |
[13] | CHENG Ke-yang, WANG Ning, CUI Hong-gang, ZHAN Yong-zhao. Interpretability Optimization Method Based on Mutual Transfer of Local Attention Map [J]. Computer Science, 2022, 49(5): 64-70. |
[14] | CHU An-qi, DING Zhi-jun. Application of Gray Wolf Optimization Algorithm on Synchronous Processing of Sample Equalization and Feature Selection in Credit Evaluation [J]. Computer Science, 2022, 49(4): 134-139. |
[15] | CHEN Zhi-yu, SHAN Zhi-long. Research Advances in Knowledge Tracing [J]. Computer Science, 2022, 49(10): 83-95. |
|