Computer Science ›› 2023, Vol. 50 ›› Issue (6A): 220600212-7.doi: 10.11896/jsjkx.220600212
• Artificial Intelligence • Previous Articles Next Articles
WANG Dongli1, YANG Shan1, OUYANG Wanli2, LI Baopu3, ZHOU Yan1
CLC Number:
[1]CHAO L M,YIN X L.AI Governance and System:Current Si-tuation and Trend[J].Computer Science,2021,48(9):1-8. [2]HUA Y Y,ZHANG D C,GE S M.Research Progress in the Interpretability of Deep Learning Models[J].Journal of Cyber Security,2020,5(3):1-12. [3]KONG X W,TANG X Z,WANG Z M.A Survey of Explainable Artificial Intelligence Decision[J].Systems Engineering-Theory &Practice,2021,41(2):524-53. [4]ZENG C Y,YANK,WANG Z F,et al.Survey of Interpretability Research on Deep Learning Models[J].Computer Engineering and Applications,2021,57(8):1-9. [5]ALAIN G,BENGIO Y.Understanding intermediate layers using linear classifier probes[J].arXiv:1610.01644,2016. [6]WANG C,SHI Y,FAN X,et al.Attribute Reduction Based on K-nearest Neighborhood Rough Sets[J].International Journal of Approximate Reasoning,2019,106:18-31. [7]ZHENG S,DING C.A Group Lasso Based Sparse KNN Classifier[J].Pattern Recognition Letters,2020,131:227-233. [8]ZHOU Z J,CAO Y,HU C H,et al.The Interpretability of Rule-based Modeling Approach and Its Development[J].Acta Automatica Sinica,2021,47(6):1201-1216. [9]RIBEIRO M T,SINGH S,GUESTRIN C." Why should i trust you?" Explaining the Predictions of Any Classifier[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2016:1135-1144. [10]GUO W B,XU J.Using Lemna to Explain the Application ofDeep Learning in Network Security(Part I)[J].China Education Network,2019(z1):40-43. [11]SETZU M,GUIDOTTI R,MONREALE A,et al.Glocalx-from Local to Global Explanations of Black Box AI Models[J].Artificial Intelligence,2021,294:103457. [12]HINTON G,VINYALS O,DEAN J.Distilling the Knowledgein A Neural Network[J].Computer Science,2015,14(7):38-39. [13]ZHAO L,PENG X,CHEN Y,et al.Knowledge as Priors:Cross-modal Knowledge Generalization for Datasets without Superior Knowledge[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:6528-6537. [14]SPRINGENBERG J T,DOSOVITSKIY A,BROX T,et al.Striving for simplicity:The all convolutional net[C]//Proceedings of 3rd ICLR(Workshop Track).2015. [15]SUNDARARAJAN M,TALY A,YAN Q.Axiomatic Attribution for Deep Networks[C]//International Conference on Machine Learning.PMLR,2017:3319-3328. [16]SMILKOV D,THORAT N,KIM B,et al.Smoothgrad:removing noise by adding noise[C]//ICML Workshop on Visualization for Deep Learning.2017. [17]ZHOU B,KHOSLA A,LAPEDRIZA A,et al.Learning Deep Features for Discriminative Localization[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:2921-2929. [18]SELVARAJU R R, COGSWELL M, DAS A,et al.Grad-CAM:Visual Explanations from Deep Networks via Gradient-based Localization[J].International Journal of Computer Vision,2020,128(2):336-359. [19]CHATTOPADHAY A,SARKAR A,HOWLADER P,et al.Grad-cam++:Generalized gradient-based visual explanations for deep convolutional networks[C]//IEEE Winter Conference on Applications of Computer Vision.2018:839-847. [20]BINDER A,MONTAVON G,LAPUSCHKIN S,et al.Layer-wise relevance propagation for neural networks with local renormalization layers[C]//International Conference on Artificial Neural Networks.2016:63-71. [21]SHRIKUMAR A,GREENSIDE P,KUNDAJE A.Learning important features through propagating activation differences[C]//International Conference on Machine Learning.PMLR,2017:3145-3153. [22]DU M,LIU N,SONG Q,et al.Towards explanation of dnn-based prediction with guided feature inversion[C]//Proceedings of the 24th ACM SIGKDD International Conference on Know-ledge Discovery & Data Mining.2018:1358-1367. [23]ELSHAWI R,SHERIFY,AL-MALLAH M,et al.ILIME:Local and global interpretable model-agnostic explainer of black-box decision[C]//European Conference on Advances in Databases and Information Systems.Cham:Springer,2019:53-68. [24]LIN Z,FENG M,SANTOS C N D,et al.A structured self-attentive sentence embedding[C]//Proceedings of the 5th International Conference on Learning Representations.Toulon,France,2017:1-15. [25]GALASSI A,LIPPI M,TORRONI P.Attention,please! a critical review of neural attention models in natural language processing[J].arXiv:1902.02181,2019. [26]DEVLIN J,CHANG M W,LEE K,et al.Bert:Pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.2019:4171-4186. [27]HU J,SHEN L,ALBANIE S,et al.Squeeze-and-excitation networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2019,42(8):2011-2023. [28]DOSOVITSKIY A,BEYER L,KOLESNIKOV A,et al.Animage is worth 16x16 words:Transformers for image recognition at scale[C]//Proceedings of the 9th International Confe-rence on Learning Representations.2021. [29]LUNDBERG S M,LEE S I.A unified approach to interpreting model predictions[J].Advances in Neural Information Proces-sing Systems,2017,30. [30]LUNDBERG S M,ERION G,CHEN H,et al.From local explanations to global understanding with explainable AI for trees[J].Nature Machine Intelligence,2020,2(1):56-67. [31]HU Z T,MA X Z,LIU Z Z,et al.Harnessing deep neural networks with logic rules[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics(Vo-lume 1:Long Papers).2016:2410-2420. [32]WANG T,LIN Q.Hybrid predictive models:when an interpretable model collaborates with a black-box model[J].Journal of Machine Learning Research,2021,22(137):1-38. [33]YEGANEJOU M,DICK S,MILLER J.Interpretable deep convo-lutional fuzzy classifier[J].IEEE Transactions on Fuzzy Systems,2019,28(7):1407-1419. [34]WANG S X.AI Empowerment Education[J]China education network,2021(1):15. [35]HASIB K M,RAHMAN F,HASNAT R,et al.A machinelearning and explainable AI approach for predicting secondary school student performance[C]//2022 IEEE 12thAnnual Computing and Communication Workshop and Conference(CCWC).2022:399-405. [36]LI J,ZHANG G,YU L,et al.Research and design on cognitive computing framework for predicting judicial decisions[J].Journal of Signal Processing Systems,2019,91(10):1159-1167. [37]BAO Q,ZAN H,GONG P,et al.Charge prediction with legal attention[C]//CCF International Conference on Natural Language Processing and Chinese Computing.Cham:Springer,2019:447-458. [38]SOARES E,ANGELOV P,BIASO S,et al.SARS-CoV-2 CT-scan dataset:A large dataset of real patients CT scans for SARS-CoV-2 identification[J].MedRxiv,2020. [39]COUTEAUX V,NEMPONT O,PIZAINE G,et al.Towards interpretability of segmentation networks by analyzing Deep-Dreams[M]//Interpretability of machine intelligencein medical image computing and multimodal learning for clinical decision support.Cham:Springer,2019:56-63. [40]BIEN J,TIBSHIRANI R.Prototype selection for interpretableclassification[J].The Annals of Applied Statistics,2011,5(4):2403-2424. |
[1] | LIU Xiang, ZHU Jing, ZHONG Guoqiang, GU Yongjian, CUI Liyuan. Quantum Prototype Clustering [J]. Computer Science, 2023, 50(8): 27-36. |
[2] | ZHANG Yian, YANG Ying, REN Gang, WANG Gang. Study on Multimodal Online Reviews Helpfulness Prediction Based on Attention Mechanism [J]. Computer Science, 2023, 50(8): 37-44. |
[3] | SONG Xinyang, YAN Zhiyuan, SUN Muyi, DAI Linlin, LI Qi, SUN Zhenan. Review of Talking Face Generation [J]. Computer Science, 2023, 50(8): 68-78. |
[4] | WANG Xu, WU Yanxia, ZHANG Xue, HONG Ruize, LI Guangsheng. Survey of Rotating Object Detection Research in Computer Vision [J]. Computer Science, 2023, 50(8): 79-92. |
[5] | ZHOU Ziyi, XIONG Hailing. Image Captioning Optimization Strategy Based on Deep Learning [J]. Computer Science, 2023, 50(8): 99-110. |
[6] | ZHANG Xiao, DONG Hongbin. Lightweight Multi-view Stereo Integrating Coarse Cost Volume and Bilateral Grid [J]. Computer Science, 2023, 50(8): 125-132. |
[7] | WANG Yu, WANG Zuchao, PAN Rui. Survey of DGA Domain Name Detection Based on Character Feature [J]. Computer Science, 2023, 50(8): 251-259. |
[8] | LI Yang, LI Zhenhua, XIN Xianlong. Attack Economics Based Fraud Detection for MVNO [J]. Computer Science, 2023, 50(8): 260-270. |
[9] | ZHOU Fengfan, LING Hefei, ZHANG Jinyuan, XIA Ziwei, SHI Yuxuan, LI Ping. Facial Physical Adversarial Example Performance Prediction Algorithm Based on Multi-modal Feature Fusion [J]. Computer Science, 2023, 50(8): 280-285. |
[10] | ZHU Boyu, CHEN Xiao, SHA Letian, XIAO Fu. Two-layer IoT Device Classification Recognition Model Based on Traffic and Text Fingerprints [J]. Computer Science, 2023, 50(8): 304-313. |
[11] | LU Xingyuan, CHEN Jingwei, FENG Yong, WU Wenyuan. Privacy-preserving Data Classification Protocol Based on Homomorphic Encryption [J]. Computer Science, 2023, 50(8): 321-332. |
[12] | WANG Mingxia, XIONG Yun. Disease Diagnosis Prediction Algorithm Based on Contrastive Learning [J]. Computer Science, 2023, 50(7): 46-52. |
[13] | SHEN Zhehui, WANG Kailai, KONG Xiangjie. Exploring Station Spatio-Temporal Mobility Pattern:A Short and Long-term Traffic Prediction Framework [J]. Computer Science, 2023, 50(7): 98-106. |
[14] | HUO Weile, JING Tao, REN Shuang. Review of 3D Object Detection for Autonomous Driving [J]. Computer Science, 2023, 50(7): 107-118. |
[15] | ZHOU Bo, JIANG Peifeng, DUAN Chang, LUO Yuetong. Study on Single Background Object Detection Oriented Improved-RetinaNet Model and Its Application [J]. Computer Science, 2023, 50(7): 137-142. |
|