Computer Science ›› 2024, Vol. 51 ›› Issue (8): 152-159.doi: 10.11896/jsjkx.230500066
• Computer Graphics & Multimedia • Previous Articles Next Articles
TANG Ruiqi, XIAO Ting, CHI Ziqiu, WANG Zhe
CLC Number:
[1]ZHAO K L,JIN X L,WANG Y Z.A Review of Few-shotLearning[J].Journal of Software,2021,32(2):349-369. [2]CHEN W Y,LIU Y C,KIRA Z,et al.A Closer Look at Few-shot Classification[J].arXiv:1904.04232,2019. [3]RAINA R,BATTLE A,LEE H,et al.Self-taught Learning:Transfer Learning from Unlabeled Data[C]//Proceedings of the 24th International Conference on Machine Learning.Corvallis,USA:ACM,2007:759-766. [4]LIANG J,HU D,FENG J.Do We Really Need to Access the Source Data? Source Hypothesis Transfer for Unsupervised Domain Adaptation[C]//Proceedings of the 37th International Conference on Machine Learning.Online:PMLR,2020:6028-6039. [5]FINN C,ABBEEL P,LEVINE S.Model-agnostic Meta-learning for Fast Adaptation of Deep Networks[C]//Proceedings of the 34th International Conference on Machine Learning.Sydney,Australia:PMLR,2017:1126-1135. [6]VINYALS O,BLUNDELL C,LILLICRAP T,et al.MatchingNetworks for One Shot Learning[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems.Barcelona,Spain:MIT Press,2016:3630-3638. [7]SNELL J,SWERSKY K,ZEMEL R.Prototypical Networks for Few-shot Learning[C]//Proceedings of the 31th International Conference on Neural Information Processing Systems.Long Beach,USA:ACM,2017:4080-4090. [8]ORESHKIN B,RODRÍGUEZ LÓPEZ P,LACOSTE A.Tadam:Task Dependent Adaptive Metric for Improved Few-shot Lear-ning[C]//Proceedings of the 32th International Conference on Neural Information Processing Systems.Montréal,Canada:MIT Press,2018:721-731. [9]SUNG F,YANG Y,ZHANG L,et al.Learning to Compare:Relation Network for Few-shot Learning[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Salt Lake City,USA:IEEE Press,2018:1199-1208. [10]ZHANG R,CHE T,GHAHRAMAN Z,et al.Metagan:An Adversarial Approach to Few-shot Learning[C]//Proceedings of the 32th International Conference on Neural Information Processing Systems.Montréal,Canada:MIT Press,2018:2365-2374. [11]LI K,ZHANG Y L,LI K,et al.Adversarial Feature Hallucination Networks for Few-shot Learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.New York,USA:IEEE Press,2020:13470-13479. [12]LIU Y,LEE J,PARK M,et al.Learning to Propagate Labels:Transductive Propagation Network for Few-shot Learning[J].arXiv:1805.10002,2018. [13]RODRÍGUEZ P,LARADJI I,DROUIN A,et al.EmbeddingPropagation:Smoother Manifold for Few-shot Classification[C]//European Conference on Computer Vision.Graz,Germany:Springer,2020:121-138. [14]KYE S M,LEE H B,KIM H,et al.Meta-learned Confidence for Few-shot Learning[J].arXiv:2002.12017,2020. [15]HOU R,CHANG H,MA B,et al.Cross Attention Network for Few-shot Classification[C]//Proceedings of the 33th International Conference on Neural Information Processing Systems.Vancouver Canada:MIT Press,2019:4005-4016. [16]HU S X,MORENO P G,XIAO Y,et al.Empirical Bayes Transductive Meta-learning with Synthetic Gradients[C]//Procee-dings of the 8th International Conference on Learning Representations.Addis Ababa,Ethiopia:OpenReview.net,2020. [17]DHILLON G S,CHAUDHARI P,RAVICHANDRAN A,et al.A Baseline for Few-shot Image Classification[C]//Proceedings of the 8th International Conference on Learning Representations.Addis Ababa,Ethiopia:OpenReview.net,2020. [18]LI X,SUN Q,LIU Y,et al.Learning to Self-Train for Semi-Supervised Few-Shot Classification[C]//Proceedings of the 33th International Conference on Neural Information Processing Systems.Online:MIT Press,2019:10276-10286. [19]REN M,TRIANTAFILLOU E,RAVI S,et al.Meta-learningfor Semi-supervised Few-shot Classification[J].arXiv:1803.00676,2018. [20]WANG Y,XU C,LIU C,et al.Instance Credibility Inference for Few-shot Learning[C]//Proceedings of the IEEE/CVF Confe-rence on Computer Vision and Pattern Recognition.New York,USA:IEEE Press,2020:12836-12845. [21]GREENFELD D,SHALIT U.Robust Learning with the Hilbert-schmidt Independence Criterion[C]//Proceedings of the 37th International Conference on Machine Learning.Online:PMLR,2020:3759-3768. [22]LIU S,NILES-WEED J,RAZAVIAN N,et al.Early-learning Regularization Prevents Memorization of Noisy Labels[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems.Vancouver,Canada:MIT Press,2020:20331-20342. [23]BOUVEYRON C,GIRARD S,SCHMID C.High-dimensionalData Clustering[J].Computational Statistics & Data Analysis,2007,52(1):502-519. [24]FRALEY C,RAFTERY A E.Model-based Clustering,Discriminant Analysis,and Density Estimation[J].Journal of the American Statistical Association,2002,97(458):611-631. [25]MCNICHOLAS P D,MURPHY T B.Model-based Clustering of Microarray Expression Data via Latent Gaussian Mixture Mo-dels[J].Bioinformatics,2010,26(21):2705-2712. [26]LAINE S,AILA T.Temporal Ensembling for Semi-supervised Learning[J].arXiv:1610.02242,2016. [27]RUSSAKOVSKY O,DENG J,SU H,et al.Imagenet LargeScale Visual Recognition Challenge[J].International Journal of Computer Vision,2015,115(3):211-252. [28]MA R,FANG P,DRUMMOND T,et al.Adaptive PoincaréPoint to Set Distance for Few-shot Classification[C]//Procee-dings of the 36th AAAI Conference on Artificial Intelligence.Los Angeles,USA:AAAI,2022:1926-1934. [29]ZHOU F,ZHANG L,WEI W.Meta-generating Deep Attentive Metric for Few-shot Classification[J].IEEE Transactions on Circuits and Systems for Video Technology,2022,32(10):6863-6873. [30]YANG L,LI L,ZHANG Z,et al.DPGN:Distribution Propagation Graph Network for Few-shot Learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.New York,USA:IEEE Press,2020:13390-13399. [31]SIMON C,KONIUSZ P,NOCK R,et al.Adaptive Subspaces for Few-shot Learning[C]//Proceedings of the IEEE/CVF Confe-rence on Computer Vision and Pattern Recognition.Seattle,USA:IEEE Press,2020:4136-4145. [32]ZHU H,KONIUSZ P.EASE:Unsupervised Discriminant Subspace Learning for Transductive Few-shot Learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.New York,USA:IEEE Press,2022:9078-9088. [33]YU Z,CHEN L,CHENG Z,et al.Transmatch:A Transfer-learning Scheme for Semi-supervised Few-shot Learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.New York,USA:IEEE Press,2020:12856-12864. [34]KOBAK D,LINDERMAN G C.Initialization is Critical for Preserving Global Data Structure in Both t-SNE and UMAP[J].Nature Biotechnology,2021,39(2):156-157. |
[1] | XIAO Xiao, BAI Zhengyao, LI Zekai, LIU Xuheng, DU Jiajin. Parallel Multi-scale with Attention Mechanism for Point Cloud Upsampling [J]. Computer Science, 2024, 51(8): 183-191. |
[2] | ZHANG Junsan, CHENG Ming, SHEN Xiuxuan, LIU Yuxue, WANG Leiquan. Diversified Label Matrix Based Medical Image Report Generation [J]. Computer Science, 2024, 51(8): 200-208. |
[3] | GUO Fangyuan, JI Genlin. Video Anomaly Detection Method Based on Dual Discriminators and Pseudo Video Generation [J]. Computer Science, 2024, 51(8): 217-223. |
[4] | HE Zhilin, GU Tianhao, XU Guanhua. Few-shot Semi-supervised Semantic Image Translation Algorithm Based on Prototype Correction [J]. Computer Science, 2024, 51(8): 224-231. |
[5] | CHEN Siyu, MA Hailong, ZHANG Jianhui. Encrypted Traffic Classification of CNN and BiGRU Based on Self-attention [J]. Computer Science, 2024, 51(8): 396-402. |
[6] | SUN Yumo, LI Xinhang, ZHAO Wenjie, ZHU Li, LIANG Ya’nan. Driving Towards Intelligent Future:The Application of Deep Learning in Rail Transit Innovation [J]. Computer Science, 2024, 51(8): 1-10. |
[7] | KONG Lingchao, LIU Guozhu. Review of Outlier Detection Algorithms [J]. Computer Science, 2024, 51(8): 20-33. |
[8] | ZHANG Rui, WANG Ziqi, LI Yang, WANG Jiabao, CHEN Yao. Task-aware Few-shot SAR Image Classification Method Based on Multi-scale Attention Mechanism [J]. Computer Science, 2024, 51(8): 160-167. |
[9] | SHI Dianxi, GAO Yunqi, SONG Linna, LIU Zhe, ZHOU Chenlei, CHEN Ying. Deep-Init:Non Joint Initialization Method for Visual Inertial Odometry Based on Deep Learning [J]. Computer Science, 2024, 51(7): 327-336. |
[10] | FAN Yi, HU Tao, YI Peng. Host Anomaly Detection Framework Based on Multifaceted Information Fusion of SemanticFeatures for System Calls [J]. Computer Science, 2024, 51(7): 380-388. |
[11] | WANG Jinghong, TIAN Changshen, LI Haokang, WANG Wei. Lagrangian Dual-based Privacy Protection and Fairness Constrained Method for Few-shot Learning [J]. Computer Science, 2024, 51(7): 405-412. |
[12] | GAN Run, WEI Xianglin, WANG Chao, WANG Bin, WANG Min, FAN Jianhua. Backdoor Attack Method in Autoencoder End-to-End Communication System [J]. Computer Science, 2024, 51(7): 413-421. |
[13] | YANG Heng, LIU Qinrang, FAN Wang, PEI Xue, WEI Shuai, WANG Xuan. Study on Deep Learning Automatic Scheduling Optimization Based on Feature Importance [J]. Computer Science, 2024, 51(7): 22-28. |
[14] | LI Jiaying, LIANG Yudong, LI Shaoji, ZHANG Kunpeng, ZHANG Chao. Study on Algorithm of Depth Image Super-resolution Guided by High-frequency Information ofColor Images [J]. Computer Science, 2024, 51(7): 197-205. |
[15] | WANG Li, CHEN Gang, XIA Mingshan, HU Hao. DUWe:Dynamic Unknown Word Embedding Approach for Web Anomaly Detection [J]. Computer Science, 2024, 51(6A): 230300191-5. |
|