Computer Science ›› 2024, Vol. 51 ›› Issue (6A): 230300191-5.doi: 10.11896/jsjkx.230300191
• Information Security • Previous Articles Next Articles
WANG Li1,2,3, CHEN Gang1,3, XIA Mingshan1,2, HU Hao1
CLC Number:
[1]The Open Web Application Security Project.OWASP Top 10:2021,[online]Available:https://owasp.org/www-project-top-ten/. [2]PROKHORENKO V,CHOO K K R,ASHMAN H.Web application protection techniques:a taxonomy[J].J.Netw.Comput.Appl.,2016,60:95-112. [3]KUMAR K N,SUKUMARAN S.A survey on network intrusion detection system techniques[J].Int.J.Adv.Technol.Eng.Explor.,2018,5(47):385-393. [4]LEBRET R P.Word embeddings for natural language proces-sing[R].Technical Report EPFL,2016. [5]KIM Y,JERNITE Y,SONTAG D,et al.Character-aware neural language models[C]//Thirtieth AAAI Conference on Artificial Intelligence.2016. [6]KRUEGEL C,VIGNA G.Anomaly detection of web-based attacks[C]//10th Conference on Computer and Communication Security.ACM,USA,2003:251-261. [7]KUEGEL C,VIGNA G,ROBERTSON W.A multi-model ap-proach to the detection of web-based attacks[J].Computer Networks,2005,48(5). [8]ROBERTSON W,VIGNA G,KRUEGEL C,et al.Using generalization and characterization techniques in the anomaly-based detection of web attacks[C]//Annual Network and Distributed System Security Symposium(NDSS).2006. [9]TEKEREK A,GEMCI C,BAY O F.Development of a hybrid web application firewall to prevent web based attacks[C]//2014 IEEE 8th International Conference on Application of Information and Communication Technologies(AICT).2014:1-4. [10]APPLEBAUM S,GABER T,AHMED A.Signature-based andMachine-Learning-based Web Application Firewalls:A Short Survey[J].Procedia Computer Science,2021,189:359-367. [11]GAO Y,MA Y,LI D.Anomaly detection of malicious users’ behaviors for web applications based on web logs[C]//2017 IEEE 17th International Conference on Communication Technology(ICCT).2017:1352-1355. [12]SUNEETHA K R,KRISHNAMOORTHY K R.IdentifyingUser Behavior by Analyzing Web Server Access Log File[J].International Journal of Computer Science & Network Security,2009,9(4):327-332. [13]FENG Q Y.Research on Log Anomaly Detection and User Behavior Analysis based on Web Application[D].Guangzhou:South China University of Technology,2019. [14]LIANG J,ZHAO W,YE W.Anomaly-Based Web Attack Detection:A Deep Learning Approach[C]//Proceedings of the 2017 VI International Conference on Network Communication and Computing.2017:80-85. [15]JEMAL I,HADDAR M A,CHEIKHROUHOU O,et al.M-CNN:A New Hybrid Deep Learning Model for Web Security[C]//2020 IEEE/ACS 17th International Conference on Computer Systems and Applications(AICCSA).Antalya,Turkey,2020:1-7. [16]LE H,PHAM Q,SAHOO D,et al.URLNet:Learning a URL representation with deep learning for malicious URL detection[J].arXiv:1802.03162,2018. [17]ITO M,IYATOMI H.Web application firewall using character-level convolutional neural network[C]//2018 IEEE 14th International Colloquium on Signal Processing and Its Applications(CSPA).IEEE,2018:103-106. [18]SEYYAR Y E,YAVUZ A G,ÜNVER H M.Detection of Web Attacks Using the BERT Model[C]//2022 30th Signal Processing and Communications Applications Conference(SIU).Safranbolu,Turkey,2022:1-4. [19]BOKOLO B G,CHEN L,LIU Q.Detection of Web-Attack using DistilBERT,RNN,and LSTM[C]//2023 11th International Symposium on Digital Forensics and Security(ISDFS).2023:1-6. [20]TRAN A T,LUONG T D,PHAM X S,et al.Deep Models with Differential Privacy for Distributed Web Attack Detection[C]//2022 14th International Conference on Knowledge and Systems Engineering(KSE).Nha Trang,Vietnam,2022:1-6. [21]SAXE J,BERLIN K.eXpose:A Character-Level ConvolutionalNeural Network with Embeddings For Detecting Malicious URLs[J].arXiv:1702.08568,2017. [22]WU J.Convolutional Neural Network with Character Embeddings for Malicious Web Request Detection[C]//2019 IEEE Intl Conf on Parallel & Distributed Processing with Applications,Big Data & Cloud Computing,Sustainable Computing & Communications,Social Computing & Networking.IEEE,2019:622-627. [23]WANG J,ZHOU Z,CHEN J.Evaluating CNN and LSTM for web attack detection[C]//Proceedings of the 2018 10th International Conference on Machine Learning and Computing.2018:283-287. [24]PAL R,CHOWDARY N.Statistical profiling of n-grams forpayload based anomaly detection for HTTP web traffic[C]//Proceedings of the 2018 IEEE International Conference on Advanced Networksand Telecommunications Systems(ANTS).Indore,India,2018. [25]KHREICH W,KHOSRAVIFAR B,HAMOU-LHADJ A,et al.An anomaly detection system based on variable N-gram features and one-class SVM[J].Information and Software Technology,2017,91:186-197. [26]MIKOLOV T,CHEN K,CORRADO G,et al.Effcient Estimation of Word Representations in Vector Space[J].arXiv:1301.3781,2013. [27]MIKOLOV T,SUTSKEVER I,KAI C,et al.Distributed Representations of Words and Phrases and their Compositionality[J].arXiv:1310.4546,2013. [28]HTTP DATASET CSIC 2010[OL].http://www.isi.csic.es/dataset/. [29]AHMAD F Z.WAF Dataset[OL].https://github.com/faiz-ann24/Fwaf-Machine-Learning-driven-Web-Application-Firewall. |
[1] | WANG Yingjie, ZHANG Chengye, BAI Fengbo, WANG Zumin. Named Entity Recognition Approach of Judicial Documents Based on Transformer [J]. Computer Science, 2024, 51(6A): 230500164-9. |
[2] | LIANG Fang, XU Xuyao, ZHAO Kailong, ZHAO Xuanfeng, ZHANG Guijun. Remote Template Detection Algorithm and Its Application in Protein Structure Prediction [J]. Computer Science, 2024, 51(6A): 230600225-7. |
[3] | PENG Bo, LI Yaodong, GONG Xianfu, LI Hao. Method for Entity Relation Extraction Based on Heterogeneous Graph Neural Networks and TextSemantic Enhancement [J]. Computer Science, 2024, 51(6A): 230700071-5. |
[4] | ZHANG Tianchi, LIU Yuxuan. Research Progress of Underwater Image Processing Based on Deep Learning [J]. Computer Science, 2024, 51(6A): 230400107-12. |
[5] | WANG Guogang, DONG Zhihao. Lightweight Image Semantic Segmentation Based on Attention Mechanism and Densely AdjacentPrediction [J]. Computer Science, 2024, 51(6A): 230300204-8. |
[6] | MENG Xiangfu, REN Quanying, YANG Dongshen, LI Keqian, YAO Keyu, ZHU Yan. Literature Classification of Individual Reports of Adverse Drug Reactions Based on BERT and CNN [J]. Computer Science, 2024, 51(6A): 230400049-6. |
[7] | JIAO Ruodan, GAO Donghui, HUANG Yanhua, LIU Shuo, DUAN Xuanfei, WANG Rui, LIU Weidong. Study and Verification on Few-shot Evaluation Methods for AI-based Quality Inspection in Production Lines [J]. Computer Science, 2024, 51(6A): 230700086-8. |
[8] | ZHANG Le, YU Ying, GE Hao. Mural Inpainting Based on Fast Fourier Convolution and Feature Pruning Coordinate Attention [J]. Computer Science, 2024, 51(6A): 230400083-9. |
[9] | WU Yibo, HAO Yingguang, WANG Hongyu. Rice Defect Segmentation Based on Dual-stream Convolutional Neural Networks [J]. Computer Science, 2024, 51(6A): 230600107-8. |
[10] | HOU Linhao, LIU Fan. Remote Sensing Image Fusion Combining Multi-scale Convolution Blocks and Dense Convolution Blocks [J]. Computer Science, 2024, 51(6A): 230400110-6. |
[11] | HUANG Yuanhang, BIAN Shan, WANG Chuntao. Gaussian Enhancement Module for Reinforcing High-frequency Details in Camera ModelIdentification [J]. Computer Science, 2024, 51(6A): 230700125-5. |
[12] | SUN Yang, DING Jianwei, ZHANG Qi, WEI Huiwen, TIAN Bowen. Study on Super-resolution Image Reconstruction Using Residual Feature Aggregation NetworkBased on Attention Mechanism [J]. Computer Science, 2024, 51(6A): 230600039-6. |
[13] | SHI Songhao, WANG Xiaodan, YANG Chunxiao, WANG Yifei. SAR Image Target Recognition Based on Cross Domain Few Shot Learning [J]. Computer Science, 2024, 51(6A): 230800136-7. |
[14] | LI Yuanxin, GUO Zhongfeng, YANG Junlin. Container Lock Hole Recognition Algorithm Based on Lightweight YOLOv5s [J]. Computer Science, 2024, 51(6A): 230900021-6. |
[15] | HUANG Haixin, WU Di. Steel Defect Detection Based on Improved YOLOv7 [J]. Computer Science, 2024, 51(6A): 230800018-5. |
|