Computer Science ›› 2024, Vol. 51 ›› Issue (8): 183-191.doi: 10.11896/jsjkx.230500094
• Computer Graphics & Multimedia • Previous Articles Next Articles
XIAO Xiao, BAI Zhengyao, LI Zekai, LIU Xuheng, DU Jiajin
CLC Number:
[1]XU S K,ZHANG L J,SHI L,et al.Few-shot 3D point cloud object detection guided by Intention-attention[J].Computer Engineering,doi:10.19678/j.issn.1000-3428.0068727. [2]YANG W K,YUAN X P,CHEN X F.Spatial Multi-featureSegmentation of 3D Lidar Point Cloud[J].Computer Science,2021,49(8):143-149. [3]YU L Q,LI X Z,FU C W,et al.PU-Net:Point cloud upsampling network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:2790-2799. [4]WANG Y F,WU S H,HUANG H,et al.Patch-based progressive 3d point set upsampling[C]//Proceedings of IEEE Confe-rence on Computer Vision andPattern Recognition.2019:5958-5967. [5]QIAN G C,ABUALSHOUR A,LI G H,et al.PU-GCN:point cloud upsampling using graph convolutional networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:11683-11692. [6]HAN B,ZHANG X Y,REN S.PU-GACNet:Graph Attentionconvolution Network for Point Cloud Upsampling[J].Image and Vision Computing,2022,118:104371. [7]ALEXA M,BEHR J,COHEN-OR D,et al.Computing and rendering point set surfaces[J]IEEE Transactions on Visualization and Computer Graphics,2003,9(1):3-15. [8]FERSTL D,REINBACHER C,RANFTL R,et al.Image guided depth upsampling using anisotropic total generalized variation[C]//Proceedings of IEEE International Conference on Computer Vision.2013:993-1000. [9]SCHUON S,THEOBALT C,DAVIS J,et al.High-quality scan-ning using time-of-flight depth super resolution[C]//2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.2008:1-7. [10]QI C R,SU H,MO K C,et al.Pointnet:Deep learning on point sets for 3d classification and segmentation[C]//Proceeding of the IEEE Conference on Computer Vision and Pattern Recognition.2017:652-660. [11]QI C R,LI Y,HAO S,et al.PointNet++:Deep Hierarchical Feature Learning on Point sets in a metric space[C]//Procee-dings of the 31st International Conference on Neural Information Processing Systems.2017:5105-5114. [12]LI R H,LI X Z,FU C W,et al.PU-GAN:a point cloud upsampling adversarial network[C]//Proceedings of IEEE/CVF International Conference on Computer Vision.2019:7203-7212. [13]LI R H,LI X Z,HENG P A,et al.Point cloud upsampling viadisentangled refinement[C]//Proceedings of IEEE/CVF Conference on Computer Vision andPattern Recognition.2021:344-353. [14]LIU H,YUAN H,HOU J,et al.PUFA-GAN:A Frequency-Aware Generative Adversarial Network for 3D point Cloud Upsampling[J].IEEE Transactions on Image Processing,2022,31:7389-7402. [15]LIU H,YUAN H,HAMZAOUI R,et al.PU-Refiner:A Geo-metry Refiner with Adversarial Learning for Point Cloud Upsampling[C]//IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP 2022).2022:2270-2274. [16]LUO L Q,TANG L L,ZHOU W Y,et al.PU-EVA:an edge-vector based approximation solution for flexible-scale point cloud upsampling[C]//Proceedings of IEEE/CVF International Conference on Computer Vision.2021:16208-16217. [17]ZHOU J,CUI G Q,HU S D,et al.Graph neural networks:a review of methods and applications[J].AI Open,2020,1:57-81. [18]XU Y F,FAN T Q,XU M Y,et al.SpiderCNN:deep learning on point sets with parameterized convolutional filters[C]//Proceedings of European Conference on Computer Vision(ECCV).2018:87-102. [19]MAO J,WANG X G,LI H S.Interpolated convolutional networksfor 3d point cloud understanding[C]//Proceedings of IEEE/CVF International Conference onComputer Vision.2019:1578-1587. [20]WANG Y,SUN Y B,LIU Z W,et al.Dynamic graph cnn for learning on point clouds[J].ACM Transactions on Graphics(ToG),2019,38(5):1-12. [21]LI G H,MÜLLER M,THABET A,et al.DeepGCNs:Can GCNs go as deep as CNNs?[C]//Proceedings of IEEE/CVF International Conference on Computer Vision.2019:9267-9276. [22]KAZI A,SHEKARFOROUSH S,KRISHNA S A,et al.InceptionGCN:Receptive field aware graph convolutional network for disease prediction[C]//Processingsof 26th International Confe-rence on Medical Imaging.2019:73-85. [23]WANG L,HUANG Y C,HOU Y L,et al.Graph attention convolution for point cloud semantic segmentation[C]//Procee-dings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:10296-10305. [24]VASWANI A,SHAZEER N,PARMAR N,et al.Attention isall you need[C]//Proceedings of the 31st International Confe-rence on Neural Information Processing Systems.2017:6000-6010. [25]ZHONG F,BAI Z Y.3D point cloud super resolution with dynamic residual graph convolution networks[J].Journal of Zhejiang University(Engineering Science),2022,56(11):2251-2259. [26]LIU X H,LIU X C,LIU Y S,et al.SPU-Net:Self-Supervised Point Cloud Upsampling by Coarse-to-Fine Reconstruction With Self-Projection Optimization[J].IEEE Transactions on Image Processing,2022,31:4213-4226. [27]CHANG A X,FUNKHOUSER T,GUIBAS L,et al.ShapeNet:An Information-Rich 3D ModelRepository[J].arXiv:1512.03012,2015. [28]WIEMANN T,MITSCHKE I,MOCK A,et al.Surface Reconstruction from Arbitrarily Large Point Clouds[C]//2018 Second IEEE International Conference on Robotic Computing(IRC).2018:278-281. [29]HOPPE H.Poisson surface reconstruction and its applications[C]//Solid and Physical Modeling.2008. |
[1] | SUN Yumo, LI Xinhang, ZHAO Wenjie, ZHU Li, LIANG Ya’nan. Driving Towards Intelligent Future:The Application of Deep Learning in Rail Transit Innovation [J]. Computer Science, 2024, 51(8): 1-10. |
[2] | KONG Lingchao, LIU Guozhu. Review of Outlier Detection Algorithms [J]. Computer Science, 2024, 51(8): 20-33. |
[3] | LIU Sichun, WANG Xiaoping, PEI Xilong, LUO Hangyu. Scene Segmentation Model Based on Dual Learning [J]. Computer Science, 2024, 51(8): 133-142. |
[4] | TANG Ruiqi, XIAO Ting, CHI Ziqiu, WANG Zhe. Few-shot Image Classification Based on Pseudo-label Dependence Enhancement and NoiseInterferenceReduction [J]. Computer Science, 2024, 51(8): 152-159. |
[5] | ZHANG Rui, WANG Ziqi, LI Yang, WANG Jiabao, CHEN Yao. Task-aware Few-shot SAR Image Classification Method Based on Multi-scale Attention Mechanism [J]. Computer Science, 2024, 51(8): 160-167. |
[6] | WANG Qian, HE Lang, WANG Zhanqing, HUANG Kun. Road Extraction Algorithm for Remote Sensing Images Based on Improved DeepLabv3+ [J]. Computer Science, 2024, 51(8): 168-175. |
[7] | PU Bin, LIANG Zhengyou, SUN Yu. Monocular 3D Object Detection Based on Height-Depth Constraint and Edge Fusion [J]. Computer Science, 2024, 51(8): 192-199. |
[8] | ZHANG Junsan, CHENG Ming, SHEN Xiuxuan, LIU Yuxue, WANG Leiquan. Diversified Label Matrix Based Medical Image Report Generation [J]. Computer Science, 2024, 51(8): 200-208. |
[9] | GUO Fangyuan, JI Genlin. Video Anomaly Detection Method Based on Dual Discriminators and Pseudo Video Generation [J]. Computer Science, 2024, 51(8): 217-223. |
[10] | WANG Chao, TANG Chao, WANG Wenjian, ZHANG Jing. Infrared Human Action Recognition Method Based on Multimodal Attention Network [J]. Computer Science, 2024, 51(8): 232-241. |
[11] | ZHANG Lu, DUAN Youxiang, LIU Juan, LU Yuxi. Chinese Geological Entity Relation Extraction Based on RoBERTa and Weighted Graph Convolutional Networks [J]. Computer Science, 2024, 51(8): 297-303. |
[12] | CHEN Shanshan, YAO Subin. Study on Recommendation Algorithms Based on Knowledge Graph and Neighbor PerceptionAttention Mechanism [J]. Computer Science, 2024, 51(8): 313-323. |
[13] | CHEN Siyu, MA Hailong, ZHANG Jianhui. Encrypted Traffic Classification of CNN and BiGRU Based on Self-attention [J]. Computer Science, 2024, 51(8): 396-402. |
[14] | YANG Heng, LIU Qinrang, FAN Wang, PEI Xue, WEI Shuai, WANG Xuan. Study on Deep Learning Automatic Scheduling Optimization Based on Feature Importance [J]. Computer Science, 2024, 51(7): 22-28. |
[15] | BAI Wenchao, BAI Shuwen, HAN Xixian, ZHAO Yubo. Efficient Query Workload Prediction Algorithm Based on TCN-A [J]. Computer Science, 2024, 51(7): 71-79. |
|