Computer Science ›› 2024, Vol. 51 ›› Issue (8): 192-199.doi: 10.11896/jsjkx.230500071
• Computer Graphics & Multimedia • Previous Articles Next Articles
PU Bin1, LIANG Zhengyou1,2, SUN Yu1,2
CLC Number:
[1]ZHOU X,WANG D,KRAHENBUHL P.Objects as points[EB/OL].(2019-04-16)[2022-09-24].https://arxiv.org/abs/1904.07850. [2]LIU Z,WU Z,TOTH R.Smoke:Single-stage monocular 3d object detection via keypoint estimation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.2020:996-997. [3]CHEN Y,TAI L,SUN K,et al.Monopair:Monocular 3d object detection using pairwise spatial relationships[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:12093-12102. [4]MA X,ZHANG Y,XU D,et al.Delving into localization errors for monocular 3d object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:4721-4730. [5]DING M,HUO Y,YI H,et al.Learning depth-guided convolutions for monocular 3d object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.2020:1000-1001. [6]WANG L,DU L,YE X,et al.Depth-conditioned dynamic message propagation for monocular 3d object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:454-463. [7]ZHOU Z,DU L,YE X,et al.SGM3D:stereo guided monocular3d object detection[J].IEEE Robotics and Automation Letters,2022,7(4):10478-10485. [8]CHEN H,HUANG Y,TIAN W,et al.Monorun:Monocular 3d object detection by reconstruction and uncertainty propagation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:10379-10388. [9]READING C,HARAKEH A,CHAE J,et al.Categorical depth distribution network for monocular 3d object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:8555-8564. [10]HUANG K C,WU T H,SU H T,et al.Monodtr:Monocular 3d object detection with depth-aware transformer[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:4012-4021. [11]VASWANI A,SHAZEER N,PARMAR N,et al.Attention isall you need[J].arXiv:1706.03762,2017. [12]ZHANG Y,LU J,ZHOU J.Objects are different:Flexible monocular 3d object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:3289-3298. [13]LU Y,MA X,YANG L,et al.Geometry uncertainty projection network for monocular 3d object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:3111-3121. [14]KUMAR A,BRAZIL G,CORONA E,et al.Deviant:Depthequivariant network for monocular 3d object detection[C]//Computer Vision-ECCV 2022:17th European Conference,Tel Aviv,Israel,Part IX.Cham:Springer Nature Switzerland,2022:664-683. [15]HE K,GKIOXARI G,DOLLAR P,et al.Mask r-cnn[C]//Proceedings of the IEEE International Conference on Computer Vision.2017:2961-2969. [16]YU F,WANG D,SHELHAMER E,et al.Deep layer aggregation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:2403-2412.. [17]KENDALL A,GAL Y,CIPOLLA R.Multi-task learning using uncertainty to weigh losses for scene geometry and semantics[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:7482-7491. [18]WU Y,HE K.Group normalization[C]//Proceedings of the European Conference on Computer Vision(ECCV).2018:3-19. [19]WANG Q,WU B,ZHU P,et al.ECA-Net:Efficient channel attention for deep convolutional neural networks[C]//Procee-dings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:11534-11542. [20]HE K,ZHANG X,REN S,et al.Deep residual learning forimage recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778. [21]LIN T Y,GOYAL P,GIRSHICK R,et al.Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision.2017:2980-2988. [22]MOUSAVIAN A,ANGUELOV D,FLYNN J,et al.3d boun-ding box estimation using deep learning and geometry[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:7074-7082. [23]GEIGER A,LENZ P,STILLER C,et al.Vision meets robotics:The kitti dataset[J].The International Journal of Robotics Research,2013,32(11):1231-1237. [24]LIAN Q,YE B,XU R,et al.Exploring Geometric Consistency for Monocular 3D Object Detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:1685-1694. [25]FU H,GONG M,WANG C,et al.Deep ordinal regression network for monocular depth estimation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:2002-2011. |
[1] | XIAO Xiao, BAI Zhengyao, LI Zekai, LIU Xuheng, DU Jiajin. Parallel Multi-scale with Attention Mechanism for Point Cloud Upsampling [J]. Computer Science, 2024, 51(8): 183-191. |
[2] | ZHANG Junsan, CHENG Ming, SHEN Xiuxuan, LIU Yuxue, WANG Leiquan. Diversified Label Matrix Based Medical Image Report Generation [J]. Computer Science, 2024, 51(8): 200-208. |
[3] | WANG Chao, TANG Chao, WANG Wenjian, ZHANG Jing. Infrared Human Action Recognition Method Based on Multimodal Attention Network [J]. Computer Science, 2024, 51(8): 232-241. |
[4] | ZHANG Lu, DUAN Youxiang, LIU Juan, LU Yuxi. Chinese Geological Entity Relation Extraction Based on RoBERTa and Weighted Graph Convolutional Networks [J]. Computer Science, 2024, 51(8): 297-303. |
[5] | CHEN Shanshan, YAO Subin. Study on Recommendation Algorithms Based on Knowledge Graph and Neighbor PerceptionAttention Mechanism [J]. Computer Science, 2024, 51(8): 313-323. |
[6] | LIU Sichun, WANG Xiaoping, PEI Xilong, LUO Hangyu. Scene Segmentation Model Based on Dual Learning [J]. Computer Science, 2024, 51(8): 133-142. |
[7] | ZHANG Rui, WANG Ziqi, LI Yang, WANG Jiabao, CHEN Yao. Task-aware Few-shot SAR Image Classification Method Based on Multi-scale Attention Mechanism [J]. Computer Science, 2024, 51(8): 160-167. |
[8] | WANG Qian, HE Lang, WANG Zhanqing, HUANG Kun. Road Extraction Algorithm for Remote Sensing Images Based on Improved DeepLabv3+ [J]. Computer Science, 2024, 51(8): 168-175. |
[9] | FAN Yi, HU Tao, YI Peng. Host Anomaly Detection Framework Based on Multifaceted Information Fusion of SemanticFeatures for System Calls [J]. Computer Science, 2024, 51(7): 380-388. |
[10] | BAI Wenchao, BAI Shuwen, HAN Xixian, ZHAO Yubo. Efficient Query Workload Prediction Algorithm Based on TCN-A [J]. Computer Science, 2024, 51(7): 71-79. |
[11] | ZENG Zihui, LI Chaoyang, LIAO Qing. Multivariate Time Series Anomaly Detection Algorithm in Missing Value Scenario [J]. Computer Science, 2024, 51(7): 108-115. |
[12] | YANG Zhenzhen, WANG Dongtao, YANG Yongpeng, HUA Renyu. Multi-embedding Fusion Based on top-N Recommendation [J]. Computer Science, 2024, 51(7): 140-145. |
[13] | HU Haibo, YANG Dan, NIE Tiezheng, KOU Yue. Graph Contrastive Learning Incorporating Multi-influence and Preference for Social Recommendation [J]. Computer Science, 2024, 51(7): 146-155. |
[14] | LI Jiaying, LIANG Yudong, LI Shaoji, ZHANG Kunpeng, ZHANG Chao. Study on Algorithm of Depth Image Super-resolution Guided by High-frequency Information ofColor Images [J]. Computer Science, 2024, 51(7): 197-205. |
[15] | LOU Zhengzheng, ZHANG Xin, HU Shizhe, WU Yunpeng. Foggy Weather Object Detection Method Based on YOLOX_s [J]. Computer Science, 2024, 51(7): 206-213. |
|