Computer Science ›› 2024, Vol. 51 ›› Issue (8): 217-223.doi: 10.11896/jsjkx.230600148
• Computer Graphics & Multimedia • Previous Articles Next Articles
GUO Fangyuan, JI Genlin
CLC Number:
[1]MUNAWAR A,VINAYAVEKHIN P,DE MAGISTRIS G.Limiting the reconstruction capability of generative neural network using negative learning[C]//2017 IEEE 27th Interna-tional Workshop on Machine Learning for Signal Processing(MLSP).IEEE,2017:1-6. [2]ZONG B,SONG Q,MIN M R,et al.Deep autoencoding gaussian mixture model for unsupervised anomaly detection[C]//International Conference on Learning Representations.2018. [3]ZAHEER M Z,LEE J,ASTRID M,et al.Old is gold:Redefining the adversarially learned one-class classifier training paradigm[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:14183-14193. [4]GONG D,LIU L,LE V,et al.Memorizing normality to detectanomaly:Memory-augmented deep autoencoder for unsupervised anomaly detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2019:1705-1714. [5]LIU W,LUO W,LIAN D,et al.Future frame prediction foranomaly detection-a new baseline[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:6536-6545. [6]SONG H,SUN C,WU X,et al.Learning normal patterns via adversarial attention-based autoencoder for abnormal event detection in videos[J].IEEE Transactions on Multimedia,2019,22(8):2138-2148. [7]ISOLA P,ZHU J Y,ZHOU T,et al.Image-to-image translation with conditional adversarial networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:1125-1134. [8]DONG F,ZHANG Y,NIE X.Dual discriminator generative adversarial network for video anomaly detection[J].IEEE Access,2020,8:88170-88176. [9]GEORGESCU M I,IONESCU R T,KHAN F S,et al.A background-agnostic framework with adversarial training for abnormal event detection in video[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2021,44(9):4505-4523. [10]POURREZA M,MOHAMMADI B,KHAKI M,et al.G2d:Generate to detect anomaly[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.2021:2003-2012. [11]RONNEBERGER O,FISCHER P,BROX T.U-net:Convolu-tional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015:18th International Conference,Munich,Germany,October 5-9,2015,Proceedings,Part III 18.Springer Inter-national Publishing,2015:234-241. [12]HOU Q,ZHOU D,FENG J.Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:13713-13722. [13]LE V T,KIM Y G.Attention-based residual autoencoder forvideo anomaly detection[J].Applied Intelligence,2023,53(3):3240-3254. [14]LI H,SUN X,LI C,et al.MPAT:multi-path attention temporal method for video anomaly detection[J].Multimedia Tools and Applications,2023,82(8):12557-12575. [15]SHIN W,BU S J,CHO S B.3D-convolutional neural networkwith generative adversarial network and autoencoder for robust anomaly detection in video surveillance[J].International Journal of Neural Systems,2020,30(6):2050034. [16]PARK H,NOH J,HAM B.Learning memory-guided normality for anomaly detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:14372-14381. [17]MAHADEVAN V,LI W,BHALODIA V,et al.Anomaly detection in crowded scenes[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.2010:1975-1981. [18]LU C,SHI J,AND JIA J.Abnormal event detection at 150 fps in matlab[C]//Proceedings of the IEEE International Confe-rence on Computer Vision.2013:2720-2727. [19]NAWARATNE R,ALAHAKOON D,DE SILVA D,et al.Spatiotemporal anomaly detection using deep learning for real-time video surveillance[J].IEEE Transactions on Industrial Informatics,2019,16(1):393-402. [20]JI X,LI B,ZHU Y.Tam-net:Temporal enhanced appearance-to-motion generative network for video anomaly detection[C]//2020 International Joint Conference on Neural Networks(IJCNN).IEEE,2020:1-8. [21]YANG Y,ZHAN D,YANG F,et al.Improving video anomaly detection performance with patch-level loss and segmentation map[C]//2020 IEEE 6th International Conference on Computer and Communications(ICCC).IEEE,2020:1832-1839. [22]LU Y,YU F,REDDY M K K,et al.Few-shot scene-adaptiveanomaly detection[C]//Computer Vision-ECCV 2020:16th European Conference,Glasgow,UK,Part V 16.Springer International Publishing,2020:125-141. [23]PARK C,CHO M A,LEE M,et al.FastAno:Fast anomaly detection via spatio-temporal patch transformation[C]//Procee-dings of the IEEE/CVF Winter Conference on Applications of Computer Vision.2022:2249-2259. [24]ZHANG Q,WEI H,CHEN J,et al.Video Anomaly Detection Based on Attention Mechanism[J].Symmetry,2023,15(2):528. |
[1] | SUN Yumo, LI Xinhang, ZHAO Wenjie, ZHU Li, LIANG Ya’nan. Driving Towards Intelligent Future:The Application of Deep Learning in Rail Transit Innovation [J]. Computer Science, 2024, 51(8): 1-10. |
[2] | KONG Lingchao, LIU Guozhu. Review of Outlier Detection Algorithms [J]. Computer Science, 2024, 51(8): 20-33. |
[3] | WANG Yiyang, LIU Fagui, PENG Lingxia, ZHONG Guoxiang. Out-of-Distribution Hard Disk Failure Prediction with Affinity Propagation Clustering and Broad Learning Systems [J]. Computer Science, 2024, 51(8): 63-74. |
[4] | WEI Xiangxiang, MENG Zhaohui. Hohai Graphic Protein Data Bank and Prediction Model [J]. Computer Science, 2024, 51(8): 117-123. |
[5] | TANG Ruiqi, XIAO Ting, CHI Ziqiu, WANG Zhe. Few-shot Image Classification Based on Pseudo-label Dependence Enhancement and NoiseInterferenceReduction [J]. Computer Science, 2024, 51(8): 152-159. |
[6] | XIAO Xiao, BAI Zhengyao, LI Zekai, LIU Xuheng, DU Jiajin. Parallel Multi-scale with Attention Mechanism for Point Cloud Upsampling [J]. Computer Science, 2024, 51(8): 183-191. |
[7] | ZHANG Junsan, CHENG Ming, SHEN Xiuxuan, LIU Yuxue, WANG Leiquan. Diversified Label Matrix Based Medical Image Report Generation [J]. Computer Science, 2024, 51(8): 200-208. |
[8] | HE Zhilin, GU Tianhao, XU Guanhua. Few-shot Semi-supervised Semantic Image Translation Algorithm Based on Prototype Correction [J]. Computer Science, 2024, 51(8): 224-231. |
[9] | CAI Changjuan, ZHUANG Lei, YANG Sijin, WANG Jiaxing, YANG Xinyu. Variable-length Shaping Queue Adjustment Algorithm in Time-sensitive Networks [J]. Computer Science, 2024, 51(8): 354-363. |
[10] | CHEN Siyu, MA Hailong, ZHANG Jianhui. Encrypted Traffic Classification of CNN and BiGRU Based on Self-attention [J]. Computer Science, 2024, 51(8): 396-402. |
[11] | YANG Heng, LIU Qinrang, FAN Wang, PEI Xue, WEI Shuai, WANG Xuan. Study on Deep Learning Automatic Scheduling Optimization Based on Feature Importance [J]. Computer Science, 2024, 51(7): 22-28. |
[12] | LI Jiaying, LIANG Yudong, LI Shaoji, ZHANG Kunpeng, ZHANG Chao. Study on Algorithm of Depth Image Super-resolution Guided by High-frequency Information ofColor Images [J]. Computer Science, 2024, 51(7): 197-205. |
[13] | ZHANG Hui, ZHANG Xiaoxiong, DING Kun, LIU Shanshan. Device Fault Inference and Prediction Method Based on Dynamic Graph Representation [J]. Computer Science, 2024, 51(7): 310-318. |
[14] | SHI Dianxi, GAO Yunqi, SONG Linna, LIU Zhe, ZHOU Chenlei, CHEN Ying. Deep-Init:Non Joint Initialization Method for Visual Inertial Odometry Based on Deep Learning [J]. Computer Science, 2024, 51(7): 327-336. |
[15] | FAN Yi, HU Tao, YI Peng. Host Anomaly Detection Framework Based on Multifaceted Information Fusion of SemanticFeatures for System Calls [J]. Computer Science, 2024, 51(7): 380-388. |
|