Computer Science ›› 2024, Vol. 51 ›› Issue (8): 117-123.doi: 10.11896/jsjkx.231100014
• Database & Big Data & Data Science • Previous Articles Next Articles
WEI Xiangxiang, MENG Zhaohui
CLC Number:
[1]BERMAN H M,BATTISTUZ T,BHAT T N,et al.The protein data bank[J].Acta Crystallographica Section D:Biological Crystallography,2002,58(6):899-907. [2]BATEMAN A,MARTIN M J,ORCHARD S,et al.UniProt:the universal protein knowledgebase in 2023[J].Nucleic Acids Research,2022,51(D1):D523-D531. [3]PENG C X,LIANG F,XIA Y H,et al.Recent Advances and Challenges in Protein Structure Prediction[J].Journal of Chemical Information and Modeling,2023,64(1):76-95. [4]JUMPER J,EVANS R,PRITZEL A,et al.Highly accurate protein structure prediction with AlphaFold[J].Nature,2021,596(7873):583-589. [5]CHEN B,CHENG X,GENG Y,et al.xtrimopglm:Unified100b-scale pre-trained transformer for deciphering the language of protein[J].arXiv:2401.06199v1,2024. [6]BRYANT P,POZZATI G,ELOFSSON A.Improved prediction of protein-protein interactions using AlphaFold2[J].Nature Communications,2022,13(1):1265. [7]AKDEL M,PIRES D E V,PARDO E P,et al.A structural bio-logy community assessment of AlphaFold2 applications[J].Nature Structural & Molecular Biology,2022,29(11):1056-1067. [8]JISNA V A,JAYARAJ P B.Protein structure prediction:conventional and deep learning perspectives[J].The Protein Journal,2021,40(4):522-544. [9]PEARCE R,ZHANG Y.Toward the solution of the proteinstructure prediction problem[J].Journal of Biological Chemistry,2021,297(1). [10]KANDATHIL S M,GREENER J G,LAU A M,et al.Ultrafast end-to-end protein structure prediction enables high-throughput exploration of uncharacterized proteins[J].Proceedings of the National Academy of Sciences,2022,119(4):e2113348119. [11]WEISSENOW K,HEINZINGER M,STEINEGGER M,et al.Ultra-fast protein structure prediction to capture effects of sequence variation in mutation movies[J].arXiv:2022.11.14.516473v2,2022. [12]ALQURAISHI M.End-to-end differentiable learning of protein structure[J].Cell Systems,2019,8(4):292-301.e3. [13]INGRAHAM J,RIESSELMAN A,SANDER C,et al.Learning protein structure with a differentiable simulator[C]//International Conference on Learning Representations.2018. [14]JONES D T,THORNTON J M.The impact of AlphaFold2 one year on[J].Nature Methods,2022,19(1):15-20. [15]WANG W,PENG Z,YANG J.Single-sequence protein structure prediction using supervised transformer protein language models[J].Nature Computational Science,2022,2(12):804-814. [16]LIN Z,AKIN H,RAO R,et al.Evolutionary-scale prediction of atomic-level protein structure with a language model[J].Science,2023,379(6637):1123-1130. [17]VASWANI A,SHAZEER N,PARMAR N,et al.Attention isall you need[J].arXiv:1706.03762,2017. [18]BERMAN H M.The protein data bank:a historical perspective[J].Acta Crystallographica Section A:Foundations of Crystallography,2008,64(1):88-95. [19]AL-LAZIKANI B,JUNG J,ANG Z,et al.Protein structure prediction[J].Current Opinion in Chemical Biology,2001,5(1):51-56. [20]PHAN H K,DANG T H.Protein structure prediction usingDeep Learning[R].VNU University of Engineering and Technology,2018. [21]TORRISI M,POLLASTRI G,LE Q.Deep learning methods in protein structure prediction[J].Computational and Structural Biotechnology Journal,2020,18:1301-1310. [22]SKWARK M J,RAIMONDI D,MICHEL M,et al.Improvedcontact predictions using the recognition of protein like contact patterns[J].PLoS Computational Biology,2014,10(11):e1003889. [23]LECUN Y,BENGIO Y,HINTON G.Deep learning[J].Nature,2015,521(7553):436-444. [24]SRIVASTAVA A,NAGAI T,et al.Role of computationalmethods in going beyond X-ray crystallography to explore protein structure and dynamics[J].International Journal of Molecular Sciences,2018,19(11):3401. [25]BILLETER M,WAGNER G,WÜTHRICH K.Solution NMRstructure determination of proteins revisited[J].Journal of Biomolecular NMR,2008,42:155-158. |
[1] | WANG Yingjie, ZHANG Chengye, BAI Fengbo, WANG Zumin. Named Entity Recognition Approach of Judicial Documents Based on Transformer [J]. Computer Science, 2024, 51(6A): 230500164-9. |
[2] | WU Fengyuan, LIU Ming, YIN Xiaokang, CAI Ruijie, LIU Shengli. Remote Access Trojan Traffic Detection Based on Fusion Sequences [J]. Computer Science, 2024, 51(6): 434-442. |
[3] | XUE Fenghao, JIANG Haibo, TANG Dan. Review of Deep Learning Applications in Healthcare [J]. Computer Science, 2023, 50(4): 1-15. |
[4] | YANG Jin-cai, CAO Yuan, HU Quan, SHEN Xian-jun. Relation Classification of Chinese Causal Compound Sentences Based on Transformer Model and Relational Word Feature [J]. Computer Science, 2021, 48(6A): 295-298. |
[5] | LI Zhang-wei, XIAO Lu-qian, HAO Xiao-hu, ZHOU Xiao-gen, ZHANG Gui-jun. Multimodal Optimization Algorithm for Protein Conformation Space [J]. Computer Science, 2020, 47(7): 161-165. |
[6] | XIE Teng-yu,ZHOU Xiao-gen,HU Jun,ZHANG Gui-jun. Contact Map-based Residue-pair Distances Restrained Protein Structure Prediction Algorithm [J]. Computer Science, 2020, 47(1): 59-65. |
[7] | LI Zhang-wei, HAO Xiao-hu and ZHANG Gui-jun. Replica Exchange Based Local Enhanced Differential Evolution Searching Method in Ab-initio Protein Structure Prediction [J]. Computer Science, 2017, 44(5): 211-217. |
[8] | DONG Hui, HAO Xiao-hu and ZHANG Gui-jun. Local Enhancement Differential Evolution Searching Method for Protein Conformational Space [J]. Computer Science, 2015, 42(Z11): 22-26. |
[9] | HAO Xiao-hu, ZHANG Gui-jun, ZHOU Xiao-gen, CHENG Zheng-hua and ZHANG Qi-peng. Protein Conformational Space Optimization Algorithm Based on Fragment-assembly [J]. Computer Science, 2015, 42(3): 237-240. |
[10] | . [J]. Computer Science, 2008, 35(10): 243-245. |
[11] | LU Zhi-Peng, HUANG Wen-Qi (School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074). [J]. Computer Science, 2005, 32(11): 148-149. |
|