Computer Science ›› 2024, Vol. 51 ›› Issue (8): 420-428.doi: 10.11896/jsjkx.230500101
• Information Security • Previous Articles Next Articles
ZHENG Haibin1,2, LIU Xinran1, CHEN Jinyin1,2, WANG Pengcheng1, WANG Xuanye1
CLC Number:
[1]PAPADOGIANNAKI E,IOANNIDIS S.A survey on encrypted network traffic analysis applications,techniques,and countermeasures[J].ACM Computing Surveys(CSUR),2021,54(6):1-35. [2]XIAO Y,LIU J,WU J,et al.Leveraging deep reinforcementlearning for traffic engineering:A survey[J].IEEE Communications Surveys & Tutorials,2021,23(4):2064-2097. [3]ABBASI M,SHAHRAKI A,TAHERKORDI A.Deep learning for network traffic monitoring and analysis(NTMA):A survey[J].Computer Communications,2021,170:19-41. [4]GAO Z Y,WANG T J,WANG Y,et al.Traffic PredictionMethod for 5G Network Based on Generative Adversarial Network[J].Computer Science,2022,49(4):321-328. [5]SONG Y L,LV G H,WANG G Z,et al.SDN Traffic Prediction Based on Graph Convolutional Network[J].Computer Science,2021,48(S1):392-397. [6]YAO L S,LIU D,PEI Z F,et al.Real-time Network Traffic Prediction Model Based on EMD and Clustering[J].Computer Science,2020,47(S2):316-320. [7]LI M,HAN D,YIN X,et al.Design and implementation of ananomaly network traffic detection model integrating temporal and spatial features[J].Security and Communication Networks,2021,2021:1-15. [8]SOULE A,LAKHINA A,TAFT N,et al.Traffic matrices:ba-lancing measurements,inference and modeling[C]//Proceedings of the 2005 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems.2005:362-373. [9]LIU W,HONG A,OU L,et al.Prediction and correction of traffic matrix in an IP backbone network[C]//2014 IEEE 33rd International Performance Computing and Communications Conference(IPCCC).IEEE,2014:1-9. [10]VALADARSKY A,SCHAPIRA M,SHAHAF D,et al.Lear-ning to route[C]//Proceedings of the 16th ACM Workshop on Hot Topics in Networks.2017:185-191. [11]AZZOUNI A,PUJOLLE G.NeuTM:A neural network-based framework for traffic matrix prediction in SDN[C]//NOMS 2018-2018 IEEE/IFIP Network Operations and Management Symposium.IEEE,2018:1-5. [12]ZHAO J,QU H,ZHAO J,et al.Towards traffic matrix prediction with LSTM recurrent neural networks[J].Electronics Letters,2018,54(9):566-568. [13]LIU Z,WANG Z,YIN X,et al.Traffic matrix prediction based on deep learning for dynamic traffic engineering[C]//2019 IEEE Symposium on Computers and Communications(ISCC).IEEE,2019:1-7. [14]HANG L,KIM B H,KIM D H.A transaction traffic control approach based on fuzzy logic to improve hyperledger fabric performance[J].Wireless Communications and Mobile Computing,2022,2022:1-19. [15]DYER K P,COULL S E,SHRIMPTON T.Marionette:A programmable network traffic obfuscation system[C]//24th USENIX Security Symposium(USENIX Security 15).2015:367-382. [16]DYER K P,COULL S E,RISTENPART T,et al.Protocol mis-identification made easy with format-transforming encryption[C]//Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications Security.2013:61-72. [17]TROIA S,ALVIZU R,ZHOU Y,et al.Deep learning-basedtraffic prediction for network optimization[C]//2018 20th International Conference on Transparent Optical Networks(ICTON).IEEE,2018:1-4. [18]RAMAKRISHNAN N,SONI T.Network traffic predictionusing recurrent neural networks[C]//2018 17th IEEE International Conference on Machine Learning and Applications(ICMLA).IEEE,2018:187-193. [19]DONAHUE J,ANNE HENDRICKS L,GUADARRAMA S,et al.Long-term recurrent convolutional networks for visual re-cognition and description[C]//Proceedings of the IEEE Confe-rence on Computer Vision and Pattern Recognition.2015:2625-2634. [20]LEA C,FLYNN M D,VIDAL R,et al.Temporal convolutional networks for action segmentation and detection[C]//Procee-dings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:156-165. [21]NIE L,JIANG D,GUO L,et al.Traffic matrix prediction andestimation based on deep learning in large-scale IP backbone networks[J].Journal of Network and Computer Applications,2016,76:16-22. [22]BI J,ZHANG X,YUAN H,et al.A hybrid prediction method for realistic network traffic with temporal convolutional network and LSTM[J].IEEE Transactions on Automation Science and Engineering,2021,19(3):1869-1879. [23]LI N,HU L,DENG Z L,et al.Research on GRU neural network Satellite traffic prediction based on transfer learning[J].Wireless Personal Communications,2021,118:815-827. [24]RAI A,ALEEM A,GORE M M.Employing LRCN model for application classification in SDN[M]//Soft Computing for Problem Solving:Proceedings of SocProS 2020,Volume 2.Singapore:Springer Singapore,2021:347-359. [25]LIU X,LIU Z A ,ZHANG Y L,et al.TCN enhanced novel malicious traffic detection for IoT devices[J].Connection Science,2022,34(1):1322-1341. [26]昌武洋,付雄,王俊昌.基于eBPF与LSTM的DDoS攻击检测系统[J].重庆工商大学学报(自然科学版),2023,40(2):36-43. [27]LI D H,GE L N,WANG Z,et al.Research on Network Intrusion Detection Model Combining DCVAE and DPC[J].Journal of Chinese Computer Systems,2024,45(4):998-1006. [28]SHEN X Y,JI W F,LI Y Q,et al.TCA1C DDoS Detection Model for Edge Computing[J].Computer Engineering,2024,50(1):198-205. |
[1] | WANG Xuxian, HUANG Jinhua, ZHAI You, LI Chu’nan, WANG Yu, ZHANG Yupeng, ZHANG Yipeng, YANG Liqun, LI Zhoujun. Survey of Detection Techniques for Domain Generation Algorithm [J]. Computer Science, 2024, 51(8): 371-378. |
[2] | CHENG Andong, XIE Sijiang, LIU Ang, FENG Yimeng. Efficient Quantum-secure Byzantine Fault Tolerance Consensus Mechanism Based on HotStuff [J]. Computer Science, 2024, 51(8): 429-439. |
[3] | WANG Zhen, ZHOU Chao, FAN Yongwen, Shi Pengfei. Overview of Unmanned Aerial Vehicle Systems Security [J]. Computer Science, 2024, 51(6A): 230800086-6. |
[4] | TIAN Hao, WANG Chao. Design and Implementation of SNMPv3 Security Mechanism Based on National Security SM3 andSM4 Algorithms [J]. Computer Science, 2024, 51(6A): 230500209-7. |
[5] | LIU Hui, JI Ke, CHEN Zhenxiang, SUN Runyuan, MA Kun, WU Jun. Malicious Attack Detection in Recommendation Systems Combining Graph Convolutional Neural Networks and Ensemble Methods [J]. Computer Science, 2024, 51(6A): 230700003-9. |
[6] | XUE Jianbin, DOU Jun, WANG Tao, MA Yuling. Scheme for Maximizing Secure Communication Capacity in UAV-assisted Edge Computing Networks [J]. Computer Science, 2024, 51(6A): 230800032-7. |
[7] | LI Fei, CHEN Tong. Survivability Evaluation of National Defense Engineering Power System Grid Considering MultipleAttack Strategies [J]. Computer Science, 2024, 51(6A): 230700171-8. |
[8] | LIU Chunling, QI Xuyan, TANG Yonghe, SUN Xuekai, LI Qinghao, ZHANG Yu. Summary of Token-based Source Code Clone Detection Techniques [J]. Computer Science, 2024, 51(6): 12-22. |
[9] | HUO Xingxing, HU Ruimin, LI Yixin. Early-stage Fatigue Detection Based on Frequency Domain Information of Eye Features [J]. Computer Science, 2024, 51(6): 247-255. |
[10] | JIA Fan, YIN Xiaokang, GAI Xianzhe, CAI Ruijie, LIU Shengli. Function-call Instruction Characteristic Analysis Based Instruction Set Architecture Recognization Method for Firmwares [J]. Computer Science, 2024, 51(6): 423-433. |
[11] | LI Panpan, WU Hao, LIU Jiajia, DUAN Li, LU Yunlong. Overview of Security Technologies and Strategies for Intelligent Railway 5G [J]. Computer Science, 2024, 51(5): 1-11. |
[12] | WANG Gengrun. Survey of Research and Application of User Identity Linkage Technology in Cyberspace [J]. Computer Science, 2024, 51(5): 12-20. |
[13] | PANG Yuxiang, CHEN Zemao. Security Scheme of UAV Flight Control Based on Attribute Access Control Policy [J]. Computer Science, 2024, 51(4): 366-372. |
[14] | SHANG Yuling, LI Peng, ZHU Feng, WANG Ruchuan. Overview of IoT Traffic Attack Detection Technology Based on Fuzzy Logic [J]. Computer Science, 2024, 51(3): 3-13. |
[15] | HUANG Nan, LI Dongdong, YAO Jia, WANG Zhe. Decentralized Federated Continual Learning Method Combined with Meta-learning [J]. Computer Science, 2024, 51(3): 271-279. |
|