Computer Science ›› 2024, Vol. 51 ›› Issue (6A): 230700003-9.doi: 10.11896/jsjkx.230700003
• Information Security • Previous Articles Next Articles
LIU Hui1,2, JI Ke1,2, CHEN Zhenxiang1,2, SUN Runyuan1,2, MA Kun1,2, WU Jun3
CLC Number:
[1]LUO X,ZHOU M C,XIA Y,et al.Generating highly accurate predictions for missing QoS data via aggregating nonnegative latent factor models[J].IEEE Transactions on Neural Networks and Learning Systems,2015,27(3):524-537. [2]LUO X,ZHOU M C,LI S,et al.An inherently nonnegative latent factor model for high-dimensional and sparse matrices from industrial applications[J].IEEE Transactions on Industrial Informatics,2017,14(5):2011-2022. [3]WU Z,WU J,CAO J,et al.HySAD:A semi-supervised hybrid shilling attack detector for trustworthy product recommendation[C]//Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2012:985-993. [4]GÜNNEMANN S,GÜNNEMANN N,FALOUTSOS C.Detecting anomalies in dynamic rating data:A robust probabilistic model for rating evolution[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2014:841-850. [5]GÜNNEMANN N,GÜNNEMANN S,FALOUTSOS C.Robustmultivariate autoregression for anomaly detection in dynamic product ratings[C]//Proceedings of the 23rd International Conference on World Wide Web.2014:361-372. [6]LU J,WU D,MAO M,et al.Recommender system application developments:a survey[J].Decision Support Systems,2015,74:12-32. [7]YANG G,GONG N Z,CAI Y.Fake Co-visitation Injection Attacks to Recommender Systems[C]//NDSS.2017. [8]XING X,MENG W,DOOZAN D,et al.Take This Personally:Pollution Attacks on Personalized Services[C]//USENIX Security Symposium.2013:671-686. [9]CALANDRINO J A,KILZER A,NARAYANAN A,et al. You might also like:Privacy risks of collaborative filtering[C]//2011 IEEE Symposium on Security and Privacy.IEEE,2011:231-246. [10]FANG M,YANG G,GONG N Z,et al.Poisoning attacks tograph-based recommender systems[C]//Proceedings of the 34th Annual Computer Security Applications Conference.2018:381-392. [11]GUNES I,KALELI C,BILGE A,et al.Shilling attacks against recommender systems:A comprehensive survey[J].Artificial Intelligence Review,2014,42(4):767-799. [12]SI M,LI Q.Shilling attacks against collaborative recommender systems:a review[J].Artificial Intelligence Review,2020,53:291-319. [13]BURKE R,MOBASHER B,WILLIAMS C,et al.Classification features for attack detection in collaborative recommender systems[C]//Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2006:542-547. [14]YANG Z,CAI Z,GUAN X.Estimating user behavior towarddetecting anomalous ratings in rating systems[J].Knowledge-Based Systems,2016,111:144-158. [15]MEHTA B,NEJDL W.Unsupervised strategies for shilling detection and robust collaborative filtering[J].User Modeling and User-Adapted Interaction,2009,19:65-97. [16]O′MAHONY M,HURLEY N,KUSHMERICK N,et al.Colla-borative recommendation:A robustness analysis[J].ACM Transactions on Internet Technology(TOIT),2004,4(4):344-377. [17]MOBASHER B,BURKE R,BHAUMIK R,et al.Toward trustworthy recommender systems:An analysis of attack models and algorithm robustness[J].ACM Transactions on Internet Technology(TOIT),2007,7(4):23. [18]LIU B,KONG D,CEN L,et al.Personalized mobile app recommendation:Reconciling app functionality and user privacy pre-ference[C]//Proceedings of the Eighth ACM International Conference on Web Search and Data Mining.2015:315-324. [19]KOREN Y,BELL R,VOLINSKY C.Matrix factorization techniques for recommender systems[J].Computer,2009,42(8):30-37. [20]LI W,GAO M,LI H,et al.Shilling attack detection in recommender systems via selecting patterns analysis[J].IEICE Transactions on Information and Systems,2016,99(10):2600-2611. [21]DOU T,YU J,XIONG Q,et al.Collaborative shilling detection bridging factorization and user embedding[C]//Collaborative Computing:Networking,Applications and Worksharing.Sprin-ger International Publishing,2018:459-469. [22]YANG Z,SUN Q,ZHANG Y,et al.Inference of suspicious co-visitation and co-rating behaviors and abnormality forensics for recommender systems[J].IEEE Transactions on Information Forensics and Security,2020,15:2766-2781. [23]WANG S,ZHANG P,WANG H,et al.Detecting shilling groups in online recommender systems based on graph convolutional network[J].Information Processing & Management,2022,59(5):103031. [24]ZHANG S,YIN H,CHEN T,et al.Gcn-based user representation learning for unifying robust recommendation and fraudster detection[C]//Proceedings of the 43rd international ACM SIGIR Conference on Research and Development in Information Retrieval.2020:689-698. [25]ZHANG F,ZHANG Z,ZHANG P,et al.UD-HMM:An unsupervised method for shilling attack detection based on hidden Markov model and hierarchical clustering[J].Knowledge-Based Systems,2018,148:146-166. [26]CAO J,WU Z,MAO B,et al.Shilling attack detection utilizing semi-supervised learning method for collaborative recommender system[J].World Wide Web,2013,16:729-748. [27]DEFFERRARD M,BRESSON X,VANDERGHEYNST P.Convolutional neural networks on graphs with fast localized spectral filtering[J/OL].Advances in Neural Information Processing Systems,2016,29.https://proceedings.neurips.cc/paper_files/paper/2016. [28]TAN M,LE Q.Efficientnet:Rethinking model scaling for convolutional neural networks[C]//International Conference on Machine Learning.PMLR,2019:6105-6114. [29]BREIMAN L.Bagging predictors[J].Machine Learning,1996,24:123-140. [30]WANG X,HE X,WANG M,et al.Neural graph collaborative filtering[C]//Proceedings of the 42nd international ACM SIGIR Conference on Research and Development in Information Retrieval.2019:165-174. [31]HE X,DENG K,WANG X,et al.Lightgcn:Simplifying andpowering graph convolution network for recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval.2020:639-648. [32]PENG S,SUGIYAMA K,MINE T.Less is More:Reweighting Important Spectral Graph Features for Recommendation[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval.2022:1273-1282. [33]LIU X Y,WU J,ZHOU Z H.Exploratory undersampling forclass-imbalance learning[J].IEEE Transactions on Systems,Man,and Cybernetics,Part B(Cybernetics),2008,39(2):539-550. |
[1] | SUN Yang, DING Jianwei, ZHANG Qi, WEI Huiwen, TIAN Bowen. Study on Super-resolution Image Reconstruction Using Residual Feature Aggregation NetworkBased on Attention Mechanism [J]. Computer Science, 2024, 51(6A): 230600039-6. |
[2] | HUANG Chungan, WANG Guiping, WU Bo, BAI Xin. Diversified Recommendation Based on Light Graph Convolution Networks and ImplicitFeedback Enhancement [J]. Computer Science, 2024, 51(6A): 230900038-11. |
[3] | SHANG Yuling, LI Peng, ZHU Feng, WANG Ruchuan. Overview of IoT Traffic Attack Detection Technology Based on Fuzzy Logic [J]. Computer Science, 2024, 51(3): 3-13. |
[4] | ZHANG Yuxiang, HAN Jiujiang, LIU Jian, XIAN Ming, ZHANG Hongjiang, CHEN Yu, LI Ziyuan. Network Advanced Threat Detection System Based on Event Sequence Correlation Under ATT&CK Framework [J]. Computer Science, 2023, 50(6A): 220600176-7. |
[5] | HUANG Yujiao, CHEN Mingkai, ZHENG Yuan, FAN Xinggang, XIAO Jie, LONG Haixia. Text Classification Based on Weakened Graph Convolutional Networks [J]. Computer Science, 2023, 50(6A): 220700039-5. |
[6] | LUO Huilan, LONG Jun, LIANG Miaomiao. Attentional Feature Fusion Approach for Siamese Network Based Object Tracking [J]. Computer Science, 2023, 50(6A): 220300237-9. |
[7] | WANG Xiaofei, FAN Xueqiang, LI Zhangwei. Improving RNA Base Interactions Prediction Based on Transfer Learning and Multi-view Feature Fusion [J]. Computer Science, 2023, 50(3): 164-172. |
[8] | MEI Pengcheng, YANG Jibin, ZHANG Qiang, HUANG Xiang. Sound Event Joint Estimation Method Based on Three-dimension Convolution [J]. Computer Science, 2023, 50(3): 191-198. |
[9] | YU Yunjun, ZHANG Pengfei, GONG Hancheng, CHEN Min. Lightweight Network Hardware Acceleration Design for Edge Computing [J]. Computer Science, 2023, 50(11A): 220800045-7. |
[10] | CHEN Qiaosong, WU Jiliang, JIANG Bo, TAN Chongchong, SUN Kaiwei, DEN Xin, WANG Jin. Coupling Local Features and Global Representations for 2D Human Pose Estimation [J]. Computer Science, 2023, 50(11A): 221100007-5. |
[11] | ZHANG Kaixuan, CAI Guoyong, ZHU Kunri. Image Aesthetics-enhanced Visual Perception Recommendation System [J]. Computer Science, 2023, 50(11A): 221100083-8. |
[12] | ZHU Cheng-zhang, HUANG Jia-er, XIAO Ya-long, WANG Han, ZOU Bei-ji. Deep Hash Retrieval Algorithm for Medical Images Based on Attention Mechanism [J]. Computer Science, 2022, 49(8): 113-119. |
[13] | SUN Jie-qi, LI Ya-feng, ZHANG Wen-bo, LIU Peng-hui. Dual-field Feature Fusion Deep Convolutional Neural Network Based on Discrete Wavelet Transformation [J]. Computer Science, 2022, 49(6A): 434-440. |
[14] | GUO Xing-chen, YU Yi-biao. Robust Speaker Verification with Spoofing Attack Detection [J]. Computer Science, 2022, 49(6A): 531-536. |
[15] | YANG Ya-hong, WANG Hai-rui. DDoS Attack Detection Method in SDN Environment Based on Renyi Entropy and BiGRU Algorithm [J]. Computer Science, 2022, 49(6A): 555-561. |
|