Computer Science ›› 2024, Vol. 51 ›› Issue (10): 234-246.doi: 10.11896/jsjkx.230700122
• Database & Big Data & Data Science • Previous Articles Next Articles
LIAO Bin1, ZHANG Tao2, YU Jiong3, LI Min3
CLC Number:
[1]YU Y X,LIU M,ZHANG H Y.Research on User Behavior Understanding and Personalized Service Recommendation Algorithm in Twitter Social Networks[J].Journal of Computer Research and Development,2020,57(7):1369-1380. [2]ZHANG Y J,DONG Z,MENG X W.Research on Personalized Advertising Recommendation System and Their Applications[J].Chinese Journal of Computers,2021,44(3):531-563. [3]PIETRO B,MONICA B,FRANCO S.Molecular generativegraph neural networks for drug discovery[J].Neurocomputing,2021,450(8):242-252. [4]JIANG W W.Graph-based deep learning for communication networks:a survey[J].Computer Communications,2022,185(3):40-54. [5]SEYYED M S,ALI M,MOHAMMAD G.Privacy protectionscheme for mobile social network[J].Journal of King Saud University-Computer and Information Sciences,2022,34(7):4062-4074. [6]SONG D Q,WANG W P,FAN Y,et al.Quantifying the structural and temporal characteristics of negative links in signed citation networks[J].Information Processing & Management,2022,59(4):1-16. [7]KAJIKAWA Y,MEJIA C,WU M,et al.Academic landscape oftechnological forecasting and social change through citation network and topic analyses[J].Technological Forecasting and Social Change,2022,182(9):1-15. [8]GAO H,LI W,CAI H.Distributed control of a flywheel energy storage system subject to unreliable communication network[J].Energy Reports,2022,8(9):11729-11739. [9]AUSTIN K,JORGE L,EMERSON M.A recursive logit model with choice aversion and its application to transportation networks[J].Transportation Research Part B:Methodological,2022,155(1):47-71. [10]ZHANG T,YU J,LIAO B,et al.The Construction and Analysis of Pass Network Graph Based on GraphX[J].Journal of Computer Research and Development,2016,53(12):2729-2752. [11]SIDDHANT D,SUNDEEP P C.A computational approach to drug repurposing using graph neural networks[J].Computers in Biology and Medicine,2022,150(9):1-14. [12]SOVAN S,ANUP K H,SOUMYENDU S B,et al.Computa-tional modeling of human-nCoV protein-protein interaction network[J].Methods,2022,203(7):488-497. [13]APURVA B,SÉBASTIEN D L,THOMAS S.Construction and contextualization approaches for protein-protein interaction networks[J].Computational and Structural Biotechnology Journal,2022,20(6):3280-3290. [14]FEDERICO C,IACOPO P,ANTONIO P,ILARIA A,et al.Gene network analysis defines a subgroup of small cell lung cancer patients with short survival[J].Clinical Lung Cancer,2022,23(6):510-521. [15]ZHAO P,ZHANG S,LIU J,et al.Zero-shot learning via the fusion of generation and embedding for image recognition[J].Information Sciences,2021,578(11):831-847. [16]LIU X,WANG L,HAN X.Transformer with peak suppression and knowledge guidance for fine-grained image recognition[J].Neurocomputing,2022,492(10):137-149. [17]WASEEM U,AMIN U,TANVEER H,et al.Artificial Intelligence of Things-assisted two-stream neural network for anomaly detection in surveillance Big Video Data[J].Future Generation Computer Systems,2022,129(4):286-297. [18]KEVAL D,YASIN Y.Online anomaly detection in surveillance videos with asymptotic bound on false alarm rate[J].Pattern Recognition,2021,114(6):1-28. [19]SAHRAEIAN R,VAN C D.Cross-entropy training of DNN ensemble acoustic models for low-resource ASR[J].IEEE/ACM Transactions on Audio,Speech,and Language Processing,2018,26(11):1991-2001. [20]YI J,TAO J,WEN Z,et al.Language-adversarial transfer lear-ning for low-resource speech recognition[J].IEEE/ACM Tran-sactions on Audio,Speech,and Language Processing,2019,27(3):621-630. [21]ZHAO Y,KOMACHI M,KAJIWARA T,et al.Region-atten-tive multimodal neural machine translation[J].Neurocomputing,2022,476(3),1-13. [22]KUMAR A,PRATAP A,SINGH A K,et al.Addressing domain shift in neural machine translation via reinforcement lear-ning[J].Expert Systems with Applications,2022,201(9):1-18. [23]GU J,WANG Z,KUEN J,et al.Recent advances in convolu-tional neural networks[J].Pattern Recognition,2018,77(5):354-377. [24]LIU J W,WANG Y F,LUO X L.Research and Development on Deep Memory Network[J].Chinese Journal of Computers,2021,44(8):1549-1589. [25]GUO M Y,SUN Z Y,ZHU Y Q,et al.A Framework for Fair Comparison of Network Representation Learning Algorithm Performance Based on Hyperparameter Tuning[J].Chinese Journal of Computers,2022,45(5):897-917. [26]CUI P,WANG X,PEI J,et al.A survey on network embedding[J].IEEE Transactions on Knowledge and Data Engineering,2019,31(5):833-852. [27]ROWEIS S,SAUL L.Nonlinear Dimensionality Reduction byLocally Linear embedding[J].Science,2000,290(5500):2323-2326. [28]BELKIN M,NIYOGI P.Laplacian eigenmaps and spectral techniques for embedding and clustering[C]//Proceedings of the Advances in Neural Information Processing Systems.Stroudsburg:ACL,2001:585-591. [29]SHAW B,JEBARA T.Structure preserving embedding[C]//Proceedings of the 26th Annual International Conference on Machine Learning.New York:ACM,2009:937-944. [30]LUO D,DING C H Q,NIE F,et al.Cauchy graph embedding[C]//Proceedings of the 28th International Conference on Machine Learning.New York:ACM,2011:553-560. [31]AHMED A,SHERVASHIDZE N,NARAYANAMURTHY S,et al.Distributed large-scale natural graph factorization[C]//Proceedings of the 22th International Conference on World Wide Web.New York:ACM,2013:37-48. [32]CAO S,LU W,XU Q.Grarep:Learning graph representations with global structural information[C]//Proceedings of the 24th ACM International on Conference on Information and Know-ledge Management.New York:ACM,2015:891-900. [33]OU M,CUI P,PEI J,et al.Asymmetric transitivity preserving graph embedding[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM,2016:1105-1114. [34]QIU J,DONG Y,MA H,et al.Netsmf:Large-scale network em-bedding as sparse matrix factorization[C]//Proceedings of the 28th International Conference on World Wide Web.New York:ACM,2019:1509-1520. [35]ZHANG J,DONG Y,WANG Y,et al.ProNE:Fast and Scalable Network Representation Learning[C]//Proceedings of the International Joint Conference on Artificial Intelligence.Menlo Park,CA:AAAI,2019:4278-4284. [36]SHAW B,JEBARA T.Structure preserving embedding[C]//Proceedings of the 26th Annual International Conference on Machine Learning.New York:ACM,2009:937-944. [37]AHMED A,SHERVASHIDZE N,NARAYANAMURTHY S,et al.Distributed large-scale natural graph factorization[C]//Proceedings of the 22th International Conference on World Wide Web.New York:ACM,2013:37-48. [38]QIU J,DONG Y,MA H,et al.Network embedding as matrix factorization:Unifying deepwalk,line,pte,and node2vec[C]//Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining.New York:ACM,2018:459-467. [39]PEROZZI B,AL-RFOU R,SKIENA S.DeepWalk:OnlineLearning of Social Representations [C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM,2014:701-710. [40]GROVER A,LESKOVEC J.Node2Vec:Scalable Feature Lear-ning for Networks [C]//Proceedings of ACM Sigkdd Interna-tional Conference on Knowledge Discovery & Data Mining.New York:ACM,2016:855-864. [41]TANG J,QU M,WANG M,et al.LINE:Large-scale information network embedding [C]//Proceedings of the 24th International Conference on World Wide Web.New York:ACM,2015:1067-1077. [42]GOLDBERG Y,LEVY O.word2vec Explained:deriving Mikolovet al.'s negative-sampling word-embedding method[J].arXiv:1402.3722,2014. [43]RIBEIRO L F R,SAVERESE P H P,FIGUEIREDO D R.Struct2Vec:Learning Node Representations from Structural Identity[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New Yor:ACM,2017:385-394. [44]CHEN H,PEROZZI B,HU Y,et al.Harp:Hierarchical representation learning for networks[C]//Proceedings of the 32th AAAI Conference on Artificial Intelligence.Menlo Park,CA:AAAI,2018:1-32. [45]PEROZZI B,KULKARNI V,SKIENA S.Walklets:Multiscale graph embeddings for interpretable network classification[J].arXiv:1605.02115,2016. [46]CHU X K,FAN X X,BI J P.Position-Aware Network Representation Learning via K-Step Mutual Information Estimation[J].Journal of Computer Research and Development,2021,58(8):1612-1623. [47]WANG D,CUI P,ZHU W.Structural deep network embedding[C]//Proceedings of the 22th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM,2016:1225-1234. [48]LV L,CHENG J,PENG N,et al.Auto-encoder based graphconvolutional networks for online financial anti-fraud[C]//Proceedings of the IEEE Conference on Computational Intelligence for Financial Engineering and Economics.Piscataway,NJ:IEEE,2019:1-6. [49]KIPF T N,WELLING M.Variational graph auto-encoders[C]//Proceedings of the Advances in Neural Information Processing Systems Workshop on Bayesian Deep Learning.Cambridge,MA:MITPress,2016. [50]HASANZADEH A,HAJIRAMEZANALI E,DUFFIELD N,et al.Semi-implicit graph variational auto-encoders[C]//Procee-dings of the 33th Conference on Neural Information Processing Systems.Cambridge,MA:MITPress,2019:10711-10722. [51]YUAN L N,HU H,LIU Z.Graph Representation LearningBased on Multi-Channel Graph Convolutional Autoencoders[J].Computer Engineering,2023,49(2):150-160,174. [52]KIPF T N,WELLING M.Semi-supervised classification withgraph convolutional networks[C]//Proceedings of the 6th International Conference on Learning Representations.Vancouver,Canada,2017. [53]HOU Z,LIU X,CEN Y,et al.GraphMAE:Self-supervisedmasked graph autoencoders[C]//Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mi-ning.2022:594-604. [54]SALEHI A,DAVULCU H.Graph attention auto-encoders[J].arXiv:1905.10715,2019. [55]VELIČKOVIĆ P,CUCURULL G,CASANOVA A,et al.Graph attention networks[C]//Proceedings of the 7th International Conference on Learning Representations.Vancouver,Canada,2018. [56]MICHAËL D,XAVIER B,PIERRE V.Convolutional neuralnetworks on graphs with fast localized spectral filtering[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems(NIPS'16).New York,USA,2016:3844-3852. [57]HAMILTON W L,YING R,LESKOVEC J.Inductive represen-tation learning on large graphs[C]//Proceedings of the 31th International Conference on Neural Information Processing Systems.Cambridge,USA,2017:1025-1035. |
[1] | LI Yunchen, ZHANG Rui, WANG Jiabao, LI Yang, WANG Ziqi, CHEN Yao. Re-parameterization Enhanced Dual-modal Realtime Object Detection Model [J]. Computer Science, 2024, 51(9): 162-172. |
[2] | HU Pengfei, WANG Youguo, ZHAI Qiqing, YAN Jun, BAI Quan. Night Vehicle Detection Algorithm Based on YOLOv5s and Bistable Stochastic Resonance [J]. Computer Science, 2024, 51(9): 173-181. |
[3] | LIU Qian, BAI Zhihao, CHENG Chunling, GUI Yaocheng. Image-Text Sentiment Classification Model Based on Multi-scale Cross-modal Feature Fusion [J]. Computer Science, 2024, 51(9): 258-264. |
[4] | LI Zhe, LIU Yiyang, WANG Ke, YANG Jie, LI Yafei, XU Mingliang. Real-time Prediction Model of Carrier Aircraft Landing Trajectory Based on Stagewise Autoencoders and Attention Mechanism [J]. Computer Science, 2024, 51(9): 273-282. |
[5] | LIU Qilong, LI Bicheng, HUANG Zhiyong. CCSD:Topic-oriented Sarcasm Detection [J]. Computer Science, 2024, 51(9): 310-318. |
[6] | YAO Yao, YANG Jibin, ZHANG Xiongwei, LI Yihao, SONG Gongkunkun. CLU-Net Speech Enhancement Network for Radio Communication [J]. Computer Science, 2024, 51(9): 338-345. |
[7] | LIU Sichun, WANG Xiaoping, PEI Xilong, LUO Hangyu. Scene Segmentation Model Based on Dual Learning [J]. Computer Science, 2024, 51(8): 133-142. |
[8] | ZHANG Rui, WANG Ziqi, LI Yang, WANG Jiabao, CHEN Yao. Task-aware Few-shot SAR Image Classification Method Based on Multi-scale Attention Mechanism [J]. Computer Science, 2024, 51(8): 160-167. |
[9] | WANG Qian, HE Lang, WANG Zhanqing, HUANG Kun. Road Extraction Algorithm for Remote Sensing Images Based on Improved DeepLabv3+ [J]. Computer Science, 2024, 51(8): 168-175. |
[10] | XIAO Xiao, BAI Zhengyao, LI Zekai, LIU Xuheng, DU Jiajin. Parallel Multi-scale with Attention Mechanism for Point Cloud Upsampling [J]. Computer Science, 2024, 51(8): 183-191. |
[11] | PU Bin, LIANG Zhengyou, SUN Yu. Monocular 3D Object Detection Based on Height-Depth Constraint and Edge Fusion [J]. Computer Science, 2024, 51(8): 192-199. |
[12] | ZHANG Junsan, CHENG Ming, SHEN Xiuxuan, LIU Yuxue, WANG Leiquan. Diversified Label Matrix Based Medical Image Report Generation [J]. Computer Science, 2024, 51(8): 200-208. |
[13] | WANG Chao, TANG Chao, WANG Wenjian, ZHANG Jing. Infrared Human Action Recognition Method Based on Multimodal Attention Network [J]. Computer Science, 2024, 51(8): 232-241. |
[14] | ZHANG Lu, DUAN Youxiang, LIU Juan, LU Yuxi. Chinese Geological Entity Relation Extraction Based on RoBERTa and Weighted Graph Convolutional Networks [J]. Computer Science, 2024, 51(8): 297-303. |
[15] | YUAN Lining, FENG Wengang, LIU Zhao. Multi-channel Graph Convolutional Networks Enhanced by Label Propagation Algorithm [J]. Computer Science, 2024, 51(8): 304-312. |
|