Computer Science ›› 2024, Vol. 51 ›› Issue (8): 304-312.doi: 10.11896/jsjkx.240100139
• Artificial Intelligence • Previous Articles Next Articles
YUAN Lining1,2, FENG Wengang1, LIU Zhao3
CLC Number:
[1]MCLAREN C D,BRUNER M W.Citation network analysis[J].International Review of Sport and Exercise Psychology,2022,15(1):179-198. [2]GHAREHCHOPOGH F S.An improved Harris Hawks optimi-zation algorithm with multi-strategy for community detection in social network[J].Journal of Bionic Engineering,2023,20(3):1175-1197. [3]ZOU M,GAN Z,CAO R,et al.Similarity-navigated graph neural networks for node classification[J].Information Sciences,2023,633:41-69. [4]NASIRI E,BERAHMAND K,LI Y.Robust graph regularization nonnegative matrix factorization for link prediction in attributed networks[J].Multimedia Tools and Applications,2023,82(3):3745-3768. [5]XU M.Understanding graph embedding methods and their applications[J].SIAM Review,2021,63(4):825-853. [6]BHATTI U A,TANG H,WU G,et al.Deep learning withgraph convolutional networks:An overview and latest applications in computational intelligence[J/OL].International Journal of Intelligent Systems,2023:1-28.https://dl.acm.org/doi/abs/10.1155/2023/8342104. [7]LI C H,ZHU X F.Dual-channel graph random convolutionalnetworks for semi-supervised node classification[J].Journal of Chinese Computer Systems,2023,44(8):1656-1664. [8]GUO M H,XU T X,LIU J J,et al.Attention mechanisms incomputer vision:A survey[J].Computational Visual Media,2022,8(3):331-368. [9]VELICKOVIC P,CUCURULL G,CASANOVA A,et al.Graph attention networks[EB/OL].[2023-12-12].https://arxiv.org/abs/1710.10903v3. [10]LI B,JING B,TONG H,et al.Graph communal contrastivelearning[C]//Proceedings of the 22nd International Conference on World Wide Web.New York:ACM,2022:1203-1213. [11]XUE L,NONG L P,ZHANG W H,et al.An improved graph convolution network semi-supervised node classification[J].Computer Applications and Software,2021,38(10):153-158,163. [12]RAGHAVAN U N,ALBERT R,KUMARA S.Near linear time algorithm to detect community structures in large-scale networks[J].Physical Review E,2007,76(3):036106. [13]WANG H,LESKOVEC J.Unifying Graph Convolutional Neural Networks and Label Propagation[EB/OL].[2023-12-12].https://arxiv.linfen3.top/abs/2002.06755v1. [14]CUNNINGHAM P,DELANY S J.k-Nearest neighbor classi-fiers-A Tutorial[J].ACM Computing Surveys(CSUR),2021,54(6):1-25. [15]LIU J Q,TU W X,ZHU E.Survey on graph convolutional neural network[J].Computer Engineering & Science,2023,45(8):1472-1481. [16]ZHANG L Y,SUN H H,SHI B B.Review of node classification methods based on graph convolutional neural networks[J/OL].Computer Science,2023:1-19.http://kns.cnki.net/kcms/detail/50.1075.TP.20230925.1655.162.html. [17]WU F,SOUZA A,ZHANG T,et al.Simplifying graph convolutional networks[C]//Proceedings of the 36th International Conference on Machine Learning.Cambridge:PMLR,2019:6861-6871. [18]TAILOR S A,OPOLKA F,LIO P,et al.Do we need anisotropic graph neural networks?[C]//Proceedings of the 2022 International Conference on Learning Representations.Open-Review.net,2022:1-19. [19]BRODY S,ALON U,YAHAV E.How attentive are graph attention networks?[C]//Proceedings of the 2022 International Conference on Learning Representations.OpenReview.net,2022:1-26. [20]GUO X C,ZHANG W Y,XIA Z X.Two-way data augmentation graph convolutional networks[J].Computer Engineering and Design,2023,44(8):2345-2351. [21]RANI V,NABI S T,KUMAR M,et al.Self-supervised Lear-ning:A Succinct Review[J].Archives of Computational Me-thods in Engineering,2023,30(4):2761-2775. [22]LI Y Q,WANG J,WANG F,et al.Semi-Supervised Node Classification Algorithm Based on Hierarchical Contrastive Learning[J].Pattern Recognition and Artificial Intelligence,2023,36(8):712-720. [23]ZHONG L,YANG J,CHEN Z,et al.Contrastive graph convolutional networks with generative adjacency matrix[J].IEEE Transactions on Signal Processing,2023,71:772-785. [24]HUANG J,DU L,CHEN X,et al.Robust mid-pass filteringgraph convolutional networks[C]//Proceedings of the 2023 International World Wide Web Conference.New York:ACM,2023:328-338. [25]NIE S M,DU Y H,LU T L,et al.Survey on local community detection algorithms[J].Software Guide,2020,19(5):271-275. [26]WANG X,ZHU M,BO D,et al.Am-gcn:Adaptive multi-channel graph convolutional networks[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Disco-very & Data Mining.New York:ACM,2020:1243-1253. [27]KIPF T N,WELLING M.Semi-supervised classification withgraph convolutional networks[EB/OL].[2023-12-19].https://arxiv.org/abs/1609.02907v4. [28]YUAN L N,LI X,WANG X D,et al.Graph embedding models:a survey[J].Journal of Frontiers of Computer Science and Technology,2022,16(1):59-87. [29]HU Y,YOU H,WANG Z,et al.Graph-mlp:node classification without message passing in graph[EB/OL].[2023-12-19].https://arxiv.org/abs/2106.04051v1. [30]ZHENG W P,GE H L,LIU M L,et al.Node classification algorithm fusing 2-connected motif-structure information[J/OL].Journal of Computer Applications,2023:1-10.http://kns.cnki.net/kcms/detail/51.1307.tp.20230816.1507.006.html. [31]ZENG J X,WANG P H,DING Y D,et al.Graph neural network based node embedding enhancement model for node classification[J].Journal of Zhe Jiang University(Engineering Science),2023,57(2):219-225. [32]CAI T T,MA R.Theoretical foundations of t-SNE for visualizing high-dimensional clustered data[J].The Journal of Machine Learning Research,2022,23(1):13581-13634. |
[1] | ZHANG Lu, DUAN Youxiang, LIU Juan, LU Yuxi. Chinese Geological Entity Relation Extraction Based on RoBERTa and Weighted Graph Convolutional Networks [J]. Computer Science, 2024, 51(8): 297-303. |
[2] | ZHANG Xiaoxi, LI Dongxi. Cancer Subtype Prediction Based on Similar Network Fusion Algorithm [J]. Computer Science, 2024, 51(6A): 230500006-7. |
[3] | HOU Lei, LIU Jinhuan, YU Xu, DU Junwei. Review of Graph Neural Networks [J]. Computer Science, 2024, 51(6): 282-298. |
[4] | LI Yilin, SUN Chengsheng, LUO Lin, JU Shenggen. Aspect-based Sentiment Classification for Word Information Enhancement Based on Sentence Information [J]. Computer Science, 2024, 51(6): 299-308. |
[5] | ZHANG Liying, SUN Haihang, SUN Yufa , SHI Bingbo. Review of Node Classification Methods Based on Graph Convolutional Neural Networks [J]. Computer Science, 2024, 51(4): 95-105. |
[6] | ZHANG Tao, LIAO Bin, YU Jiong, LI Ming, SUN Ruina. Benchmarking and Analysis for Graph Neural Network Node Classification Task [J]. Computer Science, 2024, 51(4): 132-150. |
[7] | YUAN Rong, PENG Lilan, LI Tianrui, LI Chongshou. Traffic Flow Prediction Model Based on Dual Prior-adaptive Graph Neural ODE Network [J]. Computer Science, 2024, 51(4): 151-157. |
[8] | ZHANG Mingdao, ZHOU Xin, WU Xiaohong, QING Linbo, HE Xiaohai. Unified Fake News Detection Based on Semantic Expansion and HDGCN [J]. Computer Science, 2024, 51(4): 299-306. |
[9] | LI Ke, YANG Ling, ZHAO Yanbo, CHEN Yonglong, LUO Shouxi. EGCN-CeDML:A Distributed Machine Learning Framework for Vehicle Driving Behavior Prediction [J]. Computer Science, 2023, 50(9): 318-330. |
[10] | DUAN Jianyong, YANG Xiao, WANG Hao, HE Li, LI Xin. Document-level Relation Extraction of Graph Attention Convolutional Network Based onInter-sentence Information [J]. Computer Science, 2023, 50(6A): 220800189-6. |
[11] | CHENG Haiyang, ZHANG Jianxin, SUN Qisen, ZHANG Qiang, WEI Xiaopeng. Deep Cross-modal Information Fusion Network for Stock Trend Prediction [J]. Computer Science, 2023, 50(5): 128-136. |
[12] | YANG Ying, ZHANG Fan, LI Tianrui. Aspect-based Sentiment Analysis Based on Dual-channel Graph Convolutional Network with Sentiment Knowledge [J]. Computer Science, 2023, 50(5): 230-237. |
[13] | SHAO Yunfei, SONG You, WANG Baohui. Study on Degree of Node Based Personalized Propagation of Neural Predictions forSocial Networks [J]. Computer Science, 2023, 50(4): 16-21. |
[14] | WANG Yali, ZHANG Fan, YU Zeng, LI Tianrui. Aspect-level Sentiment Classification Based on Interactive Attention and Graph Convolutional Network [J]. Computer Science, 2023, 50(4): 196-203. |
[15] | ZHOU Mingqiang, DAI Kailang, WU Quanwang, ZHU Qingsheng. Attention-aware Multi-channel Graph Convolutional Rating Prediction Model for Heterogeneous Information Networks [J]. Computer Science, 2023, 50(3): 129-138. |
|