Computer Science ›› 2024, Vol. 51 ›› Issue (11A): 231200005-10.doi: 10.11896/jsjkx.231200005
• Intelligent Computing • Previous Articles Next Articles
QIN Xianping1, DING Zhaoxu1, ZHONG Guoqiang1, WANG Dong2
CLC Number:
[1]LIU Z C,LIN G S,GOH W L.Bottom-up scene text detection with Markov clustering networks[J].International Journal of Computer Vision,2020,128:1786-1809. [2]FAN J C.Large-scale subspace clustering via k-factorization[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining.2021:342-352. [3]DANG Z Y,DENG C,YANG X,et al.Nearest Neighbor Ma-tching for Deep Clustering[C]//Proceedings of the IEEE/CVF Conference on Compute Vision and Pattern Recognition.2021:13693-13702. [4]HARTL P,KRUSCHWITZ U.Applying Automatic Text Summarization for Fake News Detection[J].arXiv:2204.01841,2022. [5]LI H R,ZhU J N,ZhANG J J,et al.Keywords-guided abstractive sentence summarization[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020:8196-8203. [6]ABDI A,HASAN S,SHAMMUDDIN S M,et al.A hybrid deep learning architecture for opinion-oriented multi-document summarization based on multi-feature fusion[J].Knowledge-Based Systems,2021,213:106658. [7]ALAMI N,MEKNASSI M,EN-NAHNAHI N,et al.Unsuper-vised neural networks for automatic Arabic text summarization using document clustering and topic modeling[J].Expert Systems with Applications,2021,172:114652. [8]STEFANOVITCH N,JACQUET G,LONGUEVILLE B D.Graph and Embedding based Approach for Text Clustering:Topic Detection in a Large Multilingual Public Consultation[C]//Companion Proceedings of the ACM Web Conference 2023.2023:694-700. [9]MCCONVILLE R,SANTOS-RODRIGUEZ R,PIECHOCKI RJ,et al.N2D:(not too) deep clustering via clustering the local manifold of an autoencoded embedding[C]//2020 25th international conference on pattern recognition(ICPR).IEEE,2021:5145-5152. [10]WANG D X,LI T R,DENG P,et al.A Generalized Deep Lear-ning Algorithm based on NMF for Multi-view Clustering[J].IEEE Transactions on Big Data,2022,9(1):328-340. [11]GEORGE L,SUMATHY P.An integrated clustering and BERT framework for improved topic modeling[J].International Journal of Information Technology,2023,15(4):2187-2195. [12]OLUKANMI P,NELWAMONDO F,MARWALA T,et al.Automatic detection of outliers and the number of clusters in k-means clustering via Chebyshev-type inequalities[J].Neural Computing and Applications,2022,34(8):5939-5958. [13]SAHA J,MUKHERJEE J.CNAK:Cluster number assistedK-means[J].Pattern Recognition,2021,110:107625. [14]ZHAO X W,NIE F P,WANG R,et al.Improving projectedfuzzy K-means clustering via robust learning[J].Neurocompu-ting,2022,101,491:34-43. [15]UNGER H,KUBEK M,HLOCH M,et al.A survey on innovative graph-based clustering algorithms[J].The Autonomous Web,2022,101:95-110. [16]WANG C,PAN S R,CELINA P Y,et al.Deep neighbor-aware embedding for node clustering in attributed graphs[J].Pattern Recognition,2022,122:108230. [17]RAN X C,XI Y,LU Y,et al.Comprehensive survey on hierarchical clustering algorithms and the recent developments[J].Artificial Intelligence Review,2023,56(8):8219-8264. [18]DOGAN A,BIRANT D.K-centroid link:a novel hierarchicalclusteringlinkage method[J].Applied Intelligence,2022,52(5):5537-5560. [19]IKOTUN A M,EZUGWU A E,ABUALIGAH L,et al.K-means clustering algorithms:A comprehensive review,va-riants analysis,and advances in the era of big data[J].Information Sciences,2023,622:178-210. [20]HUANG S D,KANGZ,XU Z,et al.Robust deep k-means:An effective and simple method for data clustering[J].Pattern Re-cognition,2021,117:107996. [21]SHRIFAN N H M M,AKBAR M F,ISA N A M.An adaptive outlier removal aided k-means clustering algorithm[J].Journal of King Saud University-Computer and Information Sciences,2022,34(8):6365-6376. [22]HE W H,WU C J,ZHOU S J,et al.Study on Short Text Clustering with Unsupervised SimCSE[J].Computer Science,2023,50(11):71-76. [23]LI Y F,YANG M,X PENG D Z,et al.Twin contrastive learning for online clustering[J].International Journal of Computer Vision,2022,130(9):2205-2221. [24]LIU Y,TU W X,ZHOU S H,et al.Deep graph clustering via dual correlation reduction[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2022,36(7):7603-7611. [25]CAI J Y,FAN J C,GUO W Z,et al.Efficient deep embedded subspace clustering[C]//Proceedings of the IEEE/CVF Confe-rence on Computer Vision and Pattern Recognition.2022:1-10. [26]SUBAKTI A,MURFI H,HARIADI N.The performance ofBERT as data representation of text clustering[J].Journal of big Data,2022,9(1):1-21. [27]CAI J Y,WANG S P,XU C,Y et al.Unsupervised deep clustering via contractive feature representation and focal loss[J].Pattern Recognition,2022,123:108386. [28]RONEN M,FINDER S E,FREIFELD O.DeepDPM:Deep clustering with an unknown number of clusters[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:9861-9870. [29]EL-KASSAS W S,SALAMA C R,RAFEA A A,et al.Auto-matic text summarization:A comprehensive survey[J].Expert systems with applications,2021,165:113679. [30]CAI X Y,SHI K L,JIANG Y H,et al.HITS-based attentional neural model for abstractive summarization[J].Knowledge-Based Systems,2021,222:106996. [31]LIU Y X,LIU P F,RADEV D,et al.BRIO:Bringing order toabstractive summarization[J].arXiv:2203.16804,2022. [32]JIN H Q,WANG T M,WAN X J.SemSUM:Semantic depen-dency guided neural abstractive summarization[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020:8026-8033. [33]JOSHI A,FIDALGO E,ALEGRE E,et al.RankSum—An unsupervised extractive text summarization based on rank fusion[J].Expert Systems with Applications,2022,200:116846. [34]JOSHI A,FIDALGO E,ALEGRE E,et al.DeepSumm:Exploiting topic models and sequence to sequence networks for extractive text summarization[J].Expert Systems with Applications,2023,211:118442. [35]MAO X J,WEI Y,YANG Y R,et al.KHGAS:KeywordsGuided Heterogeneous Graph for Abstractive Summarization[J].Computer Science,2024,51(7):278-286. [36]SRIVASTAVA R,SINGH P,RANA K P S,et al.A topic mo-deled unsupervised approach to single document extractive text summarization[J].Knowledge-Based Systems,2022,246:108636. [37]KHURANA A,BHATNAGAR V.Investigating entropy for extractive document summarization[J].Expert Systems with Applications,2022,187:115820. [38]JING B Y,YOU Z Y,YANG T,et al.Multiplex graph neural network for extractive text summarization[J].arXiv:2108.12870,2021. [39]KOURIS P,ALEXANDRIDIS G,STAFYLOPATIS A.Ab-stractive text summarization based on deep learning and semantic content generalization[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.2019:5082-5092. |
[1] | XU Jinlong, GUI Zhonghua, LI Jia'nan, LI Yingying, HAN Lin. FP8 Quantization and Inference Memory Optimization Based on MLIR [J]. Computer Science, 2024, 51(9): 112-120. |
[2] | DU Yu, YU Zishu, PENG Xiaohui, XU Zhiwei. Padding Load:Load Reducing Cluster Resource Waste and Deep Learning Training Costs [J]. Computer Science, 2024, 51(9): 71-79. |
[3] | GUO Zhiqiang, GUAN Donghai, YUAN Weiwei. Word-Character Model with Low Lexical Information Loss for Chinese NER [J]. Computer Science, 2024, 51(8): 272-280. |
[4] | CHEN Siyu, MA Hailong, ZHANG Jianhui. Encrypted Traffic Classification of CNN and BiGRU Based on Self-attention [J]. Computer Science, 2024, 51(8): 396-402. |
[5] | SUN Yumo, LI Xinhang, ZHAO Wenjie, ZHU Li, LIANG Ya’nan. Driving Towards Intelligent Future:The Application of Deep Learning in Rail Transit Innovation [J]. Computer Science, 2024, 51(8): 1-10. |
[6] | KONG Lingchao, LIU Guozhu. Review of Outlier Detection Algorithms [J]. Computer Science, 2024, 51(8): 20-33. |
[7] | TANG Ruiqi, XIAO Ting, CHI Ziqiu, WANG Zhe. Few-shot Image Classification Based on Pseudo-label Dependence Enhancement and NoiseInterferenceReduction [J]. Computer Science, 2024, 51(8): 152-159. |
[8] | XIAO Xiao, BAI Zhengyao, LI Zekai, LIU Xuheng, DU Jiajin. Parallel Multi-scale with Attention Mechanism for Point Cloud Upsampling [J]. Computer Science, 2024, 51(8): 183-191. |
[9] | ZHANG Junsan, CHENG Ming, SHEN Xiuxuan, LIU Yuxue, WANG Leiquan. Diversified Label Matrix Based Medical Image Report Generation [J]. Computer Science, 2024, 51(8): 200-208. |
[10] | GUO Fangyuan, JI Genlin. Video Anomaly Detection Method Based on Dual Discriminators and Pseudo Video Generation [J]. Computer Science, 2024, 51(8): 217-223. |
[11] | YANG Heng, LIU Qinrang, FAN Wang, PEI Xue, WEI Shuai, WANG Xuan. Study on Deep Learning Automatic Scheduling Optimization Based on Feature Importance [J]. Computer Science, 2024, 51(7): 22-28. |
[12] | GAN Run, WEI Xianglin, WANG Chao, WANG Bin, WANG Min, FAN Jianhua. Backdoor Attack Method in Autoencoder End-to-End Communication System [J]. Computer Science, 2024, 51(7): 413-421. |
[13] | LI Jiaying, LIANG Yudong, LI Shaoji, ZHANG Kunpeng, ZHANG Chao. Study on Algorithm of Depth Image Super-resolution Guided by High-frequency Information ofColor Images [J]. Computer Science, 2024, 51(7): 197-205. |
[14] | WENG Yu, LUO Haoyu, Chaomurilige, LIU Xuan , DONG Jun, LIU Zheng. CINOSUM:An Extractive Summarization Model for Low-resource Multi-ethnic Language [J]. Computer Science, 2024, 51(7): 296-302. |
[15] | SHI Dianxi, GAO Yunqi, SONG Linna, LIU Zhe, ZHOU Chenlei, CHEN Ying. Deep-Init:Non Joint Initialization Method for Visual Inertial Odometry Based on Deep Learning [J]. Computer Science, 2024, 51(7): 327-336. |
|