Computer Science ›› 2024, Vol. 51 ›› Issue (9): 112-120.doi: 10.11896/jsjkx.230900143
• High Performance Computing • Previous Articles Next Articles
XU Jinlong1,3, GUI Zhonghua2, LI Jia'nan2, LI Yingying3, HAN Lin1
CLC Number:
[1]KRISHNAMOORTHI R.Quantizing deep convolutional net-works for efficient inference:A whitepaper[J].arXiv:1806.08342,2018. [2]NOUNE B,JONES P,JUSTUS D,et al.8-bit Numerical For-mats for Deep Neural Networks[J].arXiv:2206.02915,2022. [3]KUZMIN A,VAN BAALEN M,REN Y W,et al.FP8 Quantization:The Power of the Exponent[C]//NeurIPS 2022.2022. [4]PASZKE A,GROSS S,MASSA F,et al.Pytorch:An imperative style,high-performance deep learning library[C]//Advances in Neural Information Processing Systems.2019. [5]ABADI M,AGARWAL A,BARHAM P,et al.Tensorflow:Large-scale machine learning on heterogeneous distributed systems[J].arXiv:1603.04467,2016. [6] LATTNER C,PIENAAR J A,AMINI M,et al.MLIR:A Compiler Infrastructure for the End of Moore's Law[J].arXiv:2002.11054,2020. [7]CHEN T,MOREAU T,JIANG Z,et al.TVM:end-to-end optimization stack for deep learning[J].arXiv:1802.04799,2018. [8]LEARY C,WANG T.XLA:TensorFlow,compiled[C]//google tensorflow 2017.TensorFlow Dev Summit,2017. [9]HU P C,LU M,WANG L,et al.TPU-MLIR:A Compiler For TPU Using MLIR[J].arXiv:2210.15016,2022. [10] KALAMKAR D D,MUDIGERE D,MELLEMPUDI N,et al.A Study of BFLOAT16 for Deep Learning Training[J].arXiv:1905.12322,2019. [11] JACOB B,KLIGYS S,CHEN B,et al.Quantization and Trai-ning of Neural Networks for Efficient Integer-Arithmetic-Only Inference[C]//CVPR.2018:2704-2713. [12]GASKILL B.Onnx:the open neural network exchange format[J].Linux Journal,2018(Apr.TN.285):157-161. [13]LI J H,QIN Z N,MEI Y J,et al.oneDNN Graph Compiler:A Hybrid Approach for High-Performance Deep Learning Compi-lation [J].arXiv:2301.01333,2023. [14] SUN X,CHOI J W,CHEN C Y,et al.Hybrid 8-bit Floating Point(HFP8) Training and Inference for Deep Neural Networks[C]//NeurIPS.2019:4901-4910. [15]MICIKEVICIUS P,STOSIC D,BURGESS N,et al.FP8 Formats for Deep Learning[J].arXiv:2209.05433,2022. [16]ZHOU X D,MENG Y,XIN X,et al.Research of YOLOv5s Model Acceleration Strategy in AI Chip[C]//ICCCS.2023:791-794. [17]HE K M,ZHANG X Y,REN S Q,et al.Deep Residual Learning for Image Recognition[C]//CVPR.2016:770-778. [18] LIN T Y,MAIRE M,BELONGIE S J,etal.Microsoft COCO:Common Objects in Context[C]//ECCV.2014:740-755. [19] DENG J,DONG W,SOCHER R,et al.ImageNet:A large-scale hierarchical image database[C]//CVPR.2009:248-255. |
[1] | XU Xiaohua, ZHOU Zhangbing, HU Zhongxu, LIN Shixun, YU Zhenjie. Lightweight Deep Neural Network Models for Edge Intelligence:A Survey [J]. Computer Science, 2024, 51(7): 257-271. |
[2] | GAO Yang, CAO Yangjie, DUAN Pengsong. Lightweighting Methods for Neural Network Models:A Review [J]. Computer Science, 2024, 51(6A): 230600137-11. |
[3] | SUN Jing, WANG Xiaoxia. Convolutional Neural Network Model Compression Method Based on Cloud Edge Collaborative Subclass Distillation [J]. Computer Science, 2024, 51(5): 313-320. |
[4] | LIU Yubo, GUO Bin, MA Ke, QIU Chen, LIU Sicong. Design of Visual Context-driven Interactive Bot System [J]. Computer Science, 2023, 50(9): 260-268. |
[5] | CHU Yu-chun, GONG Hang, Wang Xue-fang, LIU Pei-shun. Study on Knowledge Distillation of Target Detection Algorithm Based on YOLOv4 [J]. Computer Science, 2022, 49(6A): 337-344. |
[6] | CHENG Xiang-ming, DENG Chun-hua. Compression Algorithm of Face Recognition Model Based on Unlabeled Knowledge Distillation [J]. Computer Science, 2022, 49(6): 245-253. |
[7] | ZOU Sai-lan, LI Zhuo, CHEN Xin. Study on Transmission Optimization for Hierarchical Federated Learning [J]. Computer Science, 2022, 49(12): 5-16. |
[8] | DENG Peng-fei, GUAN Zheng, WANG Yu-yang, WANG Xue. Identification Method of Maize Disease Based on Transfer Learning and Model Compression [J]. Computer Science, 2022, 49(11A): 211200009-6. |
[9] | HUANG Yu-jiao, ZHAN Li-chao, FAN Xing-gang, XIAO Jie, LONG Hai-xia. Text Classification Based on Knowledge Distillation Model ELECTRA-base-BiLSTM [J]. Computer Science, 2022, 49(11A): 211200181-6. |
[10] | HUANG Zhong-hao, YANG Xing-yao, YU Jiong, GUO Liang, LI Xiang. Mutual Learning Knowledge Distillation Based on Multi-stage Multi-generative Adversarial Network [J]. Computer Science, 2022, 49(10): 169-175. |
[11] | CHEN Zhi-wen, WANG Kun, ZHOU Guang-yun, WANG Xu, ZHANG Xiao-dan, ZHU Hu-ming. SAR Image Change Detection Method Based on Capsule Network with Weight Pruning [J]. Computer Science, 2021, 48(7): 190-198. |
[12] | ZHOU Zhi-yi, SHONG Bing, DUAN Peng-song, CAO Yang-jie. LWID:Lightweight Gait Recognition Model Based on WiFi Signals [J]. Computer Science, 2020, 47(11): 25-31. |
[13] | LI Qing-hua, LI Cui-ping, ZHANG Jing, CHEN Hong, WANG Shao-qing. Survey of Compressed Deep Neural Network [J]. Computer Science, 2019, 46(9): 1-14. |
[14] | ZENG Yan, CHEN Yue-lin, CAI Xiao-dong. Deep Face Recognition Algorithm Based on Weighted Hashing [J]. Computer Science, 2019, 46(6): 277-281. |
|