Computer Science ›› 2024, Vol. 51 ›› Issue (11A): 231100139-6.doi: 10.11896/jsjkx.231100139
• Intelligent Computing • Previous Articles Next Articles
TANG Jianing1,2,3, LI Chengyang1,2, ZHOU Sida2,3, MA Mengxing1,2,3, SHI Yang1,2
CLC Number:
[1]VALENTE J,DEL CERRO J,BARRIENTOS A,et al.Aerialcoverage optimization in precision agriculture management:A musical harmony inspired approach[J].Computers and Electronics in Agriculture,2013,99:153-159. [2]TOMIC T,SCHMID K,LUTZ P,et al.Toward a fully autonomous UAV:Research platform for indoor and outdoor urban search and rescue[J].IEEE Robotics & Automation Magazine,2012,19(3):46-56. [3]YAMAUCHI B.A frontier-based approach for autonomous exploration[C]//Proceedings 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation CIRA'97.IEEE,1997:146-151. [4]KEIDAR M,KAMINKA G A.Efficient frontier detection forrobot exploration[J].The International Journal of Robotics Research,2014,33(2):215-236. [5]ZHOU B,ZHANG Y,CHEN X,et al.FUEL:Fast UAV exploration using incremental frontier structure and hierarchical planning[J].IEEE Robotics and Automation Letters,2021,6(2):779-786. [6]LAVALLE S M.Rapidly-exploring random trees:A new tool forpath planning[R].Research Report,1998. [7]BIRCHER A,KAMEL M,ALEXIS K,et al.Receding horizon“next-bestview” planner for 3d exploration[C]//2016 IEEE International Conference on Robotics and Automation(ICRA).IEEE,2016:1462-1468. [8]WANG C,MA H,CHEN W,et al.Efficient autonomous exploration with incrementally built topological map in 3Denviron-ments[J].IEEE Transactions on Instrumentation and Measurement,2020,69(12):9853-9865. [9]KULKARNI P,GOSWAMI D,GUHA P,et al.Path planningfor a statically stable biped robot using PRM and reinforcement learning[J].Journal of Intelligent and Robotic Systems,2006,47(3):197-214. [10]MA X,XU Y,SUN G,et al.State-chain sequential feedback reinforcement learning for path planning of autonomous mobile robots[J].Journal of Zhejiang University Science C,2013,14(3):167-178. [11]PANOV A I,YAKOVLEV K S,SUVOROV R.Grid path planning with deep reinforcement learning:Preliminary results[J].Procedia Computer Science,2018,123:347-353. [12]WANG G,ZHENG X,ZHAO H,et al.Unmanned aerial vehi-cles path planning based on deep reinforcement learning[C]//The International Conference on Natural Computation,Fuzzy Systems and Knowledge Discovery.Cham:Springer,2019:81-88. [13]GUO N,LI C,WANG D,et al.Local path planning of mobile robot based on long short-term memory neural network[J].Automatic Control and Computer Sciences,2021,55(1):53-65. [14]SUTTON R S,BARTO A G.Reinforcement Learning:An I-ntroduction(2nd ed)[M].Massachusetts:MIT Press,2018. [15]MNIH V,KAVUKCUOGLU K,SILVER D,et al.Playing Atari with deep reinforcement learning[J].arXiv:1312.5602,2013. [16]GU S,LILLICRAP T,SUTSKEVER I,et al.Continuous deep q-learning with model-based acceleration[C]//International Conference on Machine Learning.PMLR,2016:2829-2838. [17]HOCHREITER S,SCHMIDHUBER J.Long short-term memory[J].Neural Computation,1997,9(8):1735-1780. [18]CHO K,VAN MERRIËNBOER B,GULCEHRE C,et al.Learn-ing phrase representations using RNN encoder-decoder for statistical machine translation[J].arXiv:1406.1078,2014. [19]WAWRZYNSKI P.Control policy with autocorrelated noise inreinforcement learning for robotics[J].International Journal of Machine Learning and Computing,2015,5(2):91. [20]SCHAUL T,QUAN J,ANTONOGLOU I,et al.Prioritized ex-perience replay[J].arXiv:1511.05952,2015. |
[1] | WANG Tianjiu, LIU Quan, WU Lan. Offline Reinforcement Learning Algorithm for Conservative Q-learning Based on Uncertainty Weight [J]. Computer Science, 2024, 51(9): 265-272. |
[2] | ZHOU Wenhui, PENG Qinghua, XIE Lei. Study on Adaptive Cloud-Edge Collaborative Scheduling Methods for Multi-object State Perception [J]. Computer Science, 2024, 51(9): 319-330. |
[3] | GAO Yuzhao, NIE Yiming. Survey of Multi-agent Deep Reinforcement Learning Based on Value Function Factorization [J]. Computer Science, 2024, 51(6A): 230300170-9. |
[4] | LI Danyang, WU Liangji, LIU Hui, JIANG Jingqing. Deep Reinforcement Learning Based Thermal Awareness Energy Consumption OptimizationMethod for Data Centers [J]. Computer Science, 2024, 51(6A): 230500109-8. |
[5] | WANG Shuanqi, ZHAO Jianxin, LIU Chi, WU Wei, LIU Zhao. Fuzz Testing Method of Binary Code Based on Deep Reinforcement Learning [J]. Computer Science, 2024, 51(6A): 230800078-7. |
[6] | YANG Xiuwen, CUI Yunhe, QIAN Qing, GUO Chun, SHEN Guowei. COURIER:Edge Computing Task Scheduling and Offloading Method Based on Non-preemptivePriorities Queuing and Prioritized Experience Replay DRL [J]. Computer Science, 2024, 51(5): 293-305. |
[7] | LI Junwei, LIU Quan, XU Yapeng. Option-Critic Algorithm Based on Mutual Information Optimization [J]. Computer Science, 2024, 51(2): 252-258. |
[8] | SHI Dianxi, PENG Yingxuan, YANG Huanhuan, OUYANG Qianying, ZHANG Yuhui, HAO Feng. DQN-based Multi-agent Motion Planning Method with Deep Reinforcement Learning [J]. Computer Science, 2024, 51(2): 268-277. |
[9] | ZHAO Xiaoyan, ZHAO Bin, ZHANG Junna, YUAN Peiyan. Study on Cache-oriented Dynamic Collaborative Task Migration Technology [J]. Computer Science, 2024, 51(2): 300-310. |
[10] | CHEN Juan, WANG Yang, WU Zongling, CHEN Peng, ZHANG Fengchun , HAO Junfeng. Cloud-Edge Collaborative Task Transfer and Resource Reallocation Optimization Based on Deep Reinforcement Learning [J]. Computer Science, 2024, 51(11A): 231100170-10. |
[11] | AN Yang, WANG Xiuqing, ZHAO Minghua. Mobile Robots' Path Planning Method Based on Policy Fusion and Spiking Deep ReinforcementLearning [J]. Computer Science, 2024, 51(11A): 240100211-11. |
[12] | LU Yue, WANG Qiong, LIU Shun, LI Qingtao, LIU Yang, WANG Hongbiao. Reinforcement Learning Algorithm for Charging/Discharging Control of Electric Vehicles Considering Battery Loss [J]. Computer Science, 2024, 51(11A): 231200147-7. |
[13] | YANG Haolin, LIU Quan. Advantage Weighted Double Actors-Critics Algorithm Based on Key-Minor Architecture for Policy Distillation [J]. Computer Science, 2024, 51(11): 81-94. |
[14] | ZHAO Weidong, LU Ming, ZHANG Rui. Study on Road Crack Detection Based on Weakly Supervised Semantic Segmentation [J]. Computer Science, 2024, 51(11): 148-156. |
[15] | LIU Xingguang, ZHOU Li, ZHANG Xiaoying, CHEN Haitao, ZHAO Haitao, WEI Jibo. Edge Intelligent Sensing Based UAV Space Trajectory Planning Method [J]. Computer Science, 2023, 50(9): 311-317. |
|