Computer Science ›› 2024, Vol. 51 ›› Issue (11A): 231000013-6.doi: 10.11896/jsjkx.231000013
• Image Processing & Multimedia Technology • Previous Articles Next Articles
HU Gang, LIANG Dong, HUANG Shengjun
CLC Number:
[1]WANG L,LIU Z,SHI D X,et al.Fusion Tracker:Single-object Tracking Framework Fusing Image Features and Event Features[J].Computer Science,2023,50(10):96-103. [2]HAN J,YANG Y,ZHOU C,et al.EvIntSR-Net:Event guided multiple latent frames reconstruction and super-resolution[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:4882-4891. [3]XU Q,DENG J,SHEN J R,et al.A Review of Image Reconstruction Based on Event Cameras[J].Journal of Electronics & Information Technology, 2023,45(8):2699-2709. [4]LICHTSTEINERP,POSCH C,DelBruck T.A 128× 128 120 dB 15 μs Latency Asynchronous Temporal Contrast Vision Sensor[J].IEEE Journal of Solid-State Circuits,2008,43(2):566-576. [5]GALLEGO G,DELBRÜCK T,ORCHARD G,et al.Event-based vision:A survey[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,44(1):154-180. [6]SABATER A,MONTESANO L,MURILLO A C.Event Transformer.A sparse-aware solution for efficient event data proces-sing[C]//Proceedings of the IEEE/CVF Conference on Compu-ter Vision and Pattern Recognition.2022:2677-2686. [7]WAN J,XIA M,HUANG Z,et al.Event-Based Pedestrian Detection Using Dynamic Vision Sensors[J].Electronics,2021,10(8):888. [8]MIAO S,CHEN G,NING X,et al.Neuromorphic vision datasets for pedestrian detection,action recognition,and fall detection[J].Frontiers in Neurorobotics,2019,13:38. [9]HE D C,WANG L.Texture unit,texture spectrum,and texture analysis[J].IEEE transactions on Geoscience and Remote Sen-sing,1990,28(4):509-512. [10]PEROT E,DE TOURNEMIRE P,NITTI D,et al.Learning to detect objects with a 1 megapixel event camera[J].Advances in Neural Information Processing Systems,2020,33:16639-16652. [11]FINATEU T,NIWA A,MATOLIN D,et al.5.10 a 1280× 720 back-illuminated stacked temporal contrast event-based vision sensor with 4.86-m pixels,1.066 GEPS readout,programmable event-rate controller and compressive data-formatting pipeline[C]//2020 IEEE International Solid-State Circuits Conference(ISSCC).IEEE,2020. [12]HUANG J,QU L,JIA R,et al.O2u-net:A simple noisy label detection approach for deep neural networks[C]//Proceedings of the IEEE/CVF Cnternational Conference on Computer Vision.2019:3326-3334. [13]HAN B,YAO Q,YU X,et al.Co-teaching:Robust training of deep neural networks with extremely noisy labels[J].arXiv:1804.06872,2018. [14]TANAKA D,IKAMI D,YAMASAKIT,et al.Joint optimization framework for learning with noisy labels[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:5552-5560. [15]LI J,XIONG C,SOCHER R,et al.Towards noise-resistant object detection with noisy annotations[J].arXiv:2003.01285,2020. [16]BOCHKOVSKIY A,WANG C Y,LIAO H Y M.Yolov4:Optimal speed and accuracy of object detection[J].arXiv:2004.10934,2020. [17]LIU K,QIAN X,WANG Z Q.Survey on active learning algorithms[J] Computer Engineering and Applications,2012,48(34):1-4. [18]XIE Y,TOMIZUKA M,ZHAN W.Towards general and efficient active learning[J].arXiv:2112.07963,2021. [19]PAN S J,YANG Q.A survey on transfer learning[J].IEEE Transactions on Knowledge and Data Engineering,2009,22(10):1345-1359. [20]GANIN Y,USTINOVA E,AJAKAN H,et al.Domain-adversarial training of neural networks[J].The journal of machine learning research,2016,17(1):2096-2030. [21]JIANG J,CHEN B,WANG J,et al.Decoupled adaptation for cross-domain object detection[J].arXiv:2110.02578,2021. [22]VAN DER AALST W M P,RUBIN V,VERBEEK H M W,et al.Process mining:a two-step approach to balance between underfitting and overfitting[J].Software & Systems Modeling,2010,9:87-111. [23]YU F,CHEN H,WAN G X,et al.Bdd100k:A diverse driving dataset for heterogeneous multitask learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:2636-2645. [24]HAN J,LIANG X,XU H,et al.SODA10M:a large-scale 2Dself/Semi-supervised object detection dataset for autonomous driving[J].arXiv:2106.11118,2021. [25]TARVAINEN A,HARRI V.Mean teachers are better rolemodels:Weight-averaged consistency targets improve semi-supervised deep learning results[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems.2017:1195-1204. |
[1] | WANG Jiahui, PENG Guangling, DUAN Liang, YUAN Guowu, YUE Kun. Few-shot Shadow Removal Method for Text Recognition [J]. Computer Science, 2024, 51(9): 147-154. |
[2] | LI Yunchen, ZHANG Rui, WANG Jiabao, LI Yang, WANG Ziqi, CHEN Yao. Re-parameterization Enhanced Dual-modal Realtime Object Detection Model [J]. Computer Science, 2024, 51(9): 162-172. |
[3] | HUANG Xiaofei, GUO Weibin. Multi-modal Fusion Method Based on Dual Encoders [J]. Computer Science, 2024, 51(9): 207-213. |
[4] | LIU Qian, BAI Zhihao, CHENG Chunling, GUI Yaocheng. Image-Text Sentiment Classification Model Based on Multi-scale Cross-modal Feature Fusion [J]. Computer Science, 2024, 51(9): 258-264. |
[5] | PU Bin, LIANG Zhengyou, SUN Yu. Monocular 3D Object Detection Based on Height-Depth Constraint and Edge Fusion [J]. Computer Science, 2024, 51(8): 192-199. |
[6] | LI Jiaying, LIANG Yudong, LI Shaoji, ZHANG Kunpeng, ZHANG Chao. Study on Algorithm of Depth Image Super-resolution Guided by High-frequency Information ofColor Images [J]. Computer Science, 2024, 51(7): 197-205. |
[7] | LOU Zhengzheng, ZHANG Xin, HU Shizhe, WU Yunpeng. Foggy Weather Object Detection Method Based on YOLOX_s [J]. Computer Science, 2024, 51(7): 206-213. |
[8] | ZHENG Shenhai, GAO Xi, LIU Pengwei, LI Weisheng. Occluded Video Instance Segmentation Method Based on Feature Fusion of Tracking and Detection in Time Sequence [J]. Computer Science, 2024, 51(6A): 230600186-6. |
[9] | LIU Hongli, WANG Yulin, SHAO Lei, LI Ji. Study on Monocular Vision Vehicle Ranging Based on Lower Edge of Detection Frame [J]. Computer Science, 2024, 51(6A): 231000077-6. |
[10] | CHEN Yuzhang, WANG Shiqi, ZHOU Wen, ZHOU Wanting. Small Object Detection for Fish Based on SPD-Conv and NAM Attention Module [J]. Computer Science, 2024, 51(6A): 230500176-7. |
[11] | QUE Yue, GAN Menghan, LIU Zhiwei. Object Detection with Receptive Field Expansion and Multi-branch Aggregation [J]. Computer Science, 2024, 51(6A): 230600151-6. |
[12] | LOU Ren, HE Renqiang, ZHAO Sanyuan, HAO Xin, ZHOU Yueqi, WANG Xinyuan, LI Fangfang. Single Stage Unsupervised Visible-infrared Person Re-identification [J]. Computer Science, 2024, 51(6A): 230600138-7. |
[13] | JIAO Ruodan, GAO Donghui, HUANG Yanhua, LIU Shuo, DUAN Xuanfei, WANG Rui, LIU Weidong. Study and Verification on Few-shot Evaluation Methods for AI-based Quality Inspection in Production Lines [J]. Computer Science, 2024, 51(6A): 230700086-8. |
[14] | LI Yuehao, WANG Dengjiang, JIAN Haifang, WANG Hongchang, CHENG Qinghua. LiDAR-Radar Fusion Object Detection Algorithm Based on BEV Occupancy Prediction [J]. Computer Science, 2024, 51(6): 215-222. |
[15] | LIAO Junshuang, TAN Qinhong. DETR with Multi-granularity Spatial Attention and Spatial Prior Supervision [J]. Computer Science, 2024, 51(6): 239-246. |
|