Computer Science ›› 2024, Vol. 51 ›› Issue (11A): 231000034-6.doi: 10.11896/jsjkx.231000034
• Image Processing & Multimedia Technology • Previous Articles Next Articles
ZHOU Yanlin1,2, WU Kaijun1, MEI Yuan1, TIAN Bin1, YU Tianxiu2
CLC Number:
[1]WU J.Digital Development of mural cultural heritage-A case study of Dunhuang Mogao Grottoes[J].China Cultural Heritage,2016(2):34-38. [2]SHEN J X,BAO M Y.Detection and Analysis of Grotto Mural Diseases Based on Improved YOLOv4[J].Journal of Shanxi Datong University(Natural Science Edition),2023,39(2):15-17,22. [3]DONG Y X.Research on Automatic and High Precision Detection of Mural Diseases Ingrottoes[D].Beijing:Beijing University of Civil Engineering and Architecture,2022. [4]ZHANG Y E,WU L G.The Detection of Cave Mural Damage Based on Deep Learning[J].Yungang Research,2022,2(1):85-90. [5]LI X Y.Chronological Classification Anddamage Detection ofDunhuang Muralsbased on Deep Learning[D].Harbin:Harbin Institute of Technology,2019. [6]YU T,LIN C,ZHANG S,et al.Artificial Intelligence for Dunhuang Cultural Heritage Protection:The Project and the Dataset[J/OL].Internation al Journal of Computer Vision,2022.https://doi.org/10.1007/s11263-022-01665-x. [7]https://github.com/ultralytics/Yolov5. [8]https://github.com/ultralytics/ultralytics. [9]GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation[J].IEEE Computer Society,2014. [10]GIRSHICK R.Fast R-CNN[J].Computer Science,2015. [11]REN S,HE K,GIRSHICK R,et al.Faster R-CNN:Towards Real-Time Object Detection with Region Proposal Networks[C]//NIPS.2016. [12]REDMON J,DIVVALA S,GIRSHICK R,et al.You Only Look Once:Unified,Real-Time Object Detection[C]//Computer Vision & Pattern Recognition.IEEE,2016. [13]REDMON J,FARHADI A.Yolo9000:Better,faster,stronger[C]//CVPR.2017. [14]REDMON J,FARHADI A.Yolov3:An incremental improve-ment[J].arXiv:1804.02767,2018. [15]BOCHKOVSKIY A,WANG C Y,LIAO M.Yolov4:Optimalspeed and accuracy of object detection[J].arXiv:2004.10934,2020. [16]LI C,LI L,JIANG H,et al.YOLOv6:A single-stage object detection framework for industrial applications[J].arXiv:2209.02976,2022. [17]WANG C Y,BOCHKOVSKIY A,LIAO H Y M.Yolov7:Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[J].arXiv e-prints,2022. [18]CARION N,MASSA F,SYNNAEVE G,et al.End-to-end object detection with transformers[C]//Computer Vision-ECCV 2020:16th European Conference,Glasgow,UK.Springer International Publishing,2020:213-229. [19]HU J,SHEN L,SUN G.Squeeze-and-Excitation Networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).IEEE,2018. [20]JADERBERG M,SIMONYAN K,ZISSERMAN A,et al.Spatial Transformer Networks[J].arXiv:1506.02025,2015. [21]LIU J,ZHANG W,TANG Y,et al.Residual feature aggregation network for image super-resolution[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:2359-2368. [22]WOO S,PARK J,LEE J Y,et al.Cbam:Convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision(ECCV).2018:3-19. [23]LIU Y,SHAO Z,HOFFMANN N.Global attention mecha-nism:Retain information to enhance channel-spatial interactions[J].arXiv:2112.05561,2021. [24]HOU Q,ZHOU D,FENG J.Coordinate Attention for Efficient Mobile Network Design[J].2021.DOI:10.48550/arXiv.2103.02907. [25]YANG L,ZHANG R Y,LI L,et al.Simam:A simple,parameter-free attention module for convolutional neural networks[C]//International Conference on Machine Learning.PMLR,2021:11863-11874. [26]HE K,ZHANG X,REN S,et al.Spatial Pyramid Pooling inDeep Convolutional Networks for Visual Recognition[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2014,37(9):1904-1916. [27]CHEN L C,PAPANDREOU G,KOKKINOS I,et al.Deeplab:Semantic image segmentation with deep convolutional nets,atrous convolution,and fully connected crfs[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,40(4):834-848. [28]LIU J,LI C,LIANG F,et al.Inception convolution with efficient dilation search[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:11486-11495. [29]LIU S,HUANG D.Receptive field block net for accurate and fast object detection[C]//Proceedings of the European Conference on Computer Vision(ECCV).2018:385-400. [30]SZEGEDY C,LIU W,JIA Y,et al.Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2015:1-9. [31]WANG C Y,LIAO H Y M,WU Y H,et al.CSPNet:A new backbone that can enhance learning capability of CNN[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.2020:390-391. |
[1] | LIU Heng, LIN Hongyu, WU Tao. Detection Method for Workers’ Illegal Operation Behavior in PackagingWorkshop of CigaretteFactory [J]. Computer Science, 2024, 51(6A): 230700123-8. |
[2] | SONG Zhen, WANG Jiqiang, HOU Moyu, ZHAO Lin. Conveyor Belt Defect Detection Network Combining Attention Mechanism with Line Laser Assistance [J]. Computer Science, 2024, 51(6A): 230800115-6. |
[3] | LI Jie, WANG Yao, CHEN Kansong, XU Lijun. Adaptive Sparse Sensor Network Target Coverage Algorithm Based on Edge Computing [J]. Computer Science, 2024, 51(6): 364-374. |
[4] | XU Hao, LI Fengrun, LU Lu. Metal Surface Defect Detection Method Based on Dual-stream YOLOv4 [J]. Computer Science, 2024, 51(4): 209-216. |
[5] | ZHANG Guodong, CHEN Zhihua, SHENG Bin. Infrared Small Target Detection Based on Dilated Convolutional Conditional GenerativeAdversarial Networks [J]. Computer Science, 2024, 51(2): 151-160. |
[6] | GUO Ruiqiang, JIA Xiaowen, YANG Shilong, WEI Qianqiang. Multi-task Learning Model for Text Feature Enhancement in Medical Field [J]. Computer Science, 2024, 51(11A): 240200041-7. |
[7] | WANG Weijia, XIONG Wenzhuo, ZHU Shengjie, SONG Ce, SUN He, SONG Yulong. Method of Infrared Small Target Detection Based on Multi-depth Feature Connection [J]. Computer Science, 2024, 51(1): 175-183. |
[8] | QIN Jing, WANG Weibin, ZOU Qijie, WANG Zumin, JI Changqing. Review of 3D Target Detection Methods Based on LiDAR Point Clouds [J]. Computer Science, 2023, 50(6A): 220400214-7. |
[9] | ZHANG Shunyao, LI Huawang, ZHANG Yonghe, WANG Xinyu, DING Guopeng. Image Retrieval Based on Independent Attention Mechanism [J]. Computer Science, 2023, 50(6A): 220300092-6. |
[10] | WANG Xiaotian, LI Bo, KANG Xiaodong, LIU Hanqing, HAN Junling, YANG Jingyi. Study on Phased Target Detection in CT Image [J]. Computer Science, 2023, 50(6A): 220200063-10. |
[11] | LIU Hang, PU Yuanyuan, LYU Dahua, ZHAO Zhengpeng, XU Dan, QIAN Wenhua. Polarized Self-attention Constrains Color Overflow in Automatic Coloring of Image [J]. Computer Science, 2023, 50(3): 208-215. |
[12] | YANG Xiuzhang, WU Shuai, LI Na, YANG Wenwen, LIAO Wenjing, ZHOU Jisong. YOLOv3 Vehicle Recognition Algorithm for Adaptive Dehazing in Complex Environments [J]. Computer Science, 2023, 50(11A): 220700147-8. |
[13] | ZHU Wen-tao, LAN Xian-chao, LUO Huan-lin, YUE Bing, WANG Yang. Remote Sensing Aircraft Target Detection Based on Improved Faster R-CNN [J]. Computer Science, 2022, 49(6A): 378-383. |
[14] | ZHANG Lyu, ZHOU Bo-wen, WU Liang-hong. SSD Network Based on Improved Convolutional Attention Module and Residual Structure [J]. Computer Science, 2022, 49(3): 211-217. |
[15] | CHEN Jin-ling, CHENG Mao-kai, XU Zi-han. Improved FCOS Target Detection Algorithm [J]. Computer Science, 2022, 49(11A): 210900220-6. |
|