Computer Science ›› 2023, Vol. 50 ›› Issue (6A): 220400214-7.doi: 10.11896/jsjkx.220400214
• Image Processing & Multimedia Technology • Previous Articles Next Articles
QIN Jing1, WANG Weibin2, ZOU Qijie2, WANG Zumin2, JI Changqing3
CLC Number:
[1]LIU W,ANGUELOV D,ERHAN D,et al.Ssd:Single shotmultibox detector[C]//European Conference on Computer Vision.2016:21-37. [2]REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:Unified,real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:779-788. [3]REN S,HE K,GIRSHICK R,et al.Faster r-cnn:Towards real-time object detection with region proposal networks[J].Advances in Neural Information Processing systems,2015,28. [4]MASI I,WU Y,HASSNER T,et al.Deep face recognition:A survey[C]//2018 31st SIBGRAPI Conference on Graphics,Patterns and mages(SIBGRAPI).IEEE,2018:471-478. [5]HUANG R,GU J,SUN X,et al.A rapid recognition method for electronic components based on the improved YOLO-V3 network[J].Electronics,2019,8(8):825. [6]YURTSEVER E,LAMBERT J,CARBALLO A,et al.A survey of autonomous driving:Common practices and emerging techno-logies[J].IEEE access,2020,8:58443-58469. [7]LIANG M,YANG B,ZENG W,et al.Pnpnet:End-to-end perception and prediction with tracking in the loop[C]//Procee-dings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:11553-11562. [8]XIAO Y Q,YANG H M.Research on Application of Object Detection Algorithm in Traffic Scene[J].Computer Engineering and Applications,2021,57(6):30-41. [9]BRESSON G,ALSAYED Z,YU L,et al.Simultaneous localization and mapping:A survey of current trends in autonomousdriving[J].IEEE Transactions on Intelligent Vehicles,2017,2(3):194-220. [10]BOJARSKI M,DEL TESTA D,DWORAKOWSKI D,et al.End to end learning for self-driving cars[J].arXiv:1604.07316,2016. [11]HECHT J.Lidar for self-driving cars[J].Optics and Photonics News,2018,29(1):26-33. [12]PARK Y,YUN S,WON C S,et al.Calibration between color camera and 3D LIDAR instruments with a polygonal planar board[J].Sensors,2014,14(3):5333-5353. [13]SOMMER H,KHANNA R,GILITSCHENSKI I,et al.A low-cost system for high-rate,high-accuracy temporal calibration for LIDARs and cameras[C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS).2017:2219-2226. [14]CUI Y,CHEN R,CHU W,et al.Deep learning for image and point cloud fusion in autonomous driving:A review[J].IEEE Transactions on Intelligent Transportation Systems,2021,23(2):722-739. [15]CHAZETTE P,TOTEMS J,HESPEL L,et al.Principle and physics of the LiDAR measurement[M]//Optical Remote Sen-sing of Land Surface.Elsevier,2016:201-247. [16]HE H,WANG H,SUN L.Research on 3D point-cloud registration technology based on Kinect V2 sensor[C]//2018 Chinese Control And Decision Conference(CCDC).IEEE,2018:1264-1268. [17]XU Y,JOHN V,MITA S,et al.3D point cloud map based vehicle localization using stereo camera[C]//2017 IEEE Intelligent Vehicles Symposium(IV).IEEE,2017:487-492. [18]LI G Y,LI M L,WANG L,et al.AReview of Preprocessing of Laser-scanned Point Clouds Data[J].Bulletin of Surveying and Mapping,2015(11):1-3. [19]XU Z,ZHANG Z,ZHONG R,et al.Content-sensitive multilevel point cluster construction for ALS point cloud classification[J].Remote Sensing,2019,11(3):342. [20]RUSU R B,COUSINS S.3d is here:Point cloud library(pcl)[C]//2011 IEEE International Conference on Robotics and Automation.2011:1-4. [21]GEIGER A,LENZ P,URTASUN R.Are we ready for autonomous driving? the kitti vision benchmarksuite[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition.2012:3354-3361. [22]CAESAR H,BANKITI V,LANG A H,et al.nuscenes:A multimodal dataset for autonomous driving[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:11621-11631. [23]SUN P,KRETZSCHMAR H,DOTIWALLA X,et al.Scalability in perception for autonomous driving:Waymo open dataset[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:2446-2454. [24]QI C R,SU H,MO K,et al.Pointnet:Deep learning on point sets for 3d classification and segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:652-660. [25]QI C R,YI L,SU H,et al.Pointnet++:Deep hierarchical feature learning on point sets in a metric space[C]//Conference and Workshop on Neural Information Processing Systems.2017. [26]SHI S,WANG X,LI H.Pointrcnn:3d object proposal generation and detection from point cloud[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:770-779. [27]YANG Z,SUN Y,LIU S,et al.3dssd:Point-based 3d single stage object detector[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:11040-11048. [28]ZHOU Y,TUZEL O.Voxelnet:End-to-end learning for point cloud based 3d object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:4490-4499. [29]YAN Y,MAO Y,LI B.Second:Sparsely embedded convolutionaldetection[J].Sensors,2018,18(10):3337. [30]LANG A H,VORA S,CAESAR H,et al.Pointpillars:Fast encoders for object detection from point clouds[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:12697-12705. [31]YE M,XU S,CAO T.Hvnet:Hybrid voxel network for lidar based 3d object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:1631-1640. [32]SHI S,WANG Z,SHI J,et al.From points to parts:3d object detection from point cloud with part-aware and part-aggregation network[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,43(8):2647-2664. [33]HE C,ZENG H,HUANG J,et al.Structure aware single-stage 3d objectdetection from point cloud[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:11873-11882. [34]GUSTAFSSON F K,DANELLJAN M,SCHON T B.Accurate 3D object detection using energy-based models[C]//Proceedings ofthe IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:2855-2864. [35]ZHENG W,TANG W,CHEN S,et al.CIA-SSD:Confident IoU-aware single-stage object detector from point cloud[J].arXiv:2012.03015,2020. [36]ZHENG W,TANG W,JIANG L,et al.SE-SSD:Self-ensembling single-stage object detector from point cloud[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:14494-14503. [37]LI Z,YAO Y,QUAN Z,et al.Sienet:spatial information enhancement network for 3d object detection from point cloud[J].arXiv:2103.15396,2021. [38]CHEN Q,SUN L,WANG Z,et al.Object as hotspots:An anchor-free 3d object detection approach via firing of hotspots[C]//European Conference on Computer Vision.2020:68-84. [39]QIAN R,LAI X,LI X.Boundary-aware 3d object detection from point clouds[J].arXiv:2104.10330,2021. [40]LI J,DAI H,SHAO L,et al.From voxel to point:Iou-guided 3d object detection for point cloud with voxel-to-point decoder[C]//Proceedings of the 29th ACM International Conference on Multimedia.2021:4622-4631. [41]DENG J,ZHOU W,ZHANG Y,et al.From Multi-View to Hol-low-3D:Hallucinated Hollow-3D R-CNN for 3D Object Detection[J].IEEE Transactions on Circuits and Systems for Video Technology,2021,31(12):4722-4734. [42]XIE L,XU G,CAI D,et al.X-view:Non-egocentric Multi-View 3D Object Detector[J].arXiv:2103.13001,2021. [43]CHEN X,MA H,WAN J,et al.Multi-view 3dobject detection network for autonomous driving[C]//Proceedings of the IEEE conference on Computer Vision and Pattern Recognition.2017:1907-1915. [44]KU J,MOZIFIAN M,LEE J,et al.Joint 3d proposal generation and object detection from view aggregation[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS).2018:1-8. [45]YOO J H,KIM Y,KIM J,et al.3d-cvf:Generating joint camera and lidar features using cross-view spatial feature fusion for 3d object detection[C]//European Conference on Computer Vision.2020:720-736. [46]PANG S,MORRIS D,RADHA H.CLOCs:Camera-LiDAR object candidates fusion for 3D object detection[C]//2020 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS).2020:10386-10393. [47]KU J,PON A D,WALSH S,et al.Improving 3d object detection for pedestrians with virtual multi-view synthesis orientation estimation[C]//2019 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS).2019:3459-3466. [48]VORA S,LANG A H,HELOU B,et al.Pointpainting:Sequential fusion for 3d object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:4604-4612. [49]FEI J,CHEN W,HEIDENREICH P,et al.SemanticVoxels:Sequential fusion for 3D pedestrian detection using LiDAR point cloud and semantic segmentation[C]//2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems(MFI).2020:185-190. [50]QI C R,LIU W,WU C,et al.Frustum pointnets for 3d object detection from rgb-d data[C]//Proceedings of the IEEE Confe-rence on Computer Vision and Pattern Recognition.2018:918-927. [51]WANG Z,JIA K.Frustum convnet:Slidingfrustums to aggregate local point-wise features for amodal 3d object detection[C]//2019 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS).2019:1742-1749. [52]PAIGWAR A,SIERRA-GONZALEZ D,ERKENT Ö,et al.Frustum-pointpillars:A multi-stage approach for 3d object detection using rgb camera and lidar[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:2926-2933. [53]SHI S,GUO C,JIANG L,et al.Pv-rcnn:Point-voxel feature set abstraction for 3d object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:10529-10538. [54]LI J,SUN Y,LUO S,et al.P2V-RCNN:Point to Voxel Feature Learning for 3D Object Detection from Point Clouds[J].IEEE Access,2021,9:98249-98260. |
[1] | ZHANG Yian, YANG Ying, REN Gang, WANG Gang. Study on Multimodal Online Reviews Helpfulness Prediction Based on Attention Mechanism [J]. Computer Science, 2023, 50(8): 37-44. |
[2] | SONG Xinyang, YAN Zhiyuan, SUN Muyi, DAI Linlin, LI Qi, SUN Zhenan. Review of Talking Face Generation [J]. Computer Science, 2023, 50(8): 68-78. |
[3] | WANG Xu, WU Yanxia, ZHANG Xue, HONG Ruize, LI Guangsheng. Survey of Rotating Object Detection Research in Computer Vision [J]. Computer Science, 2023, 50(8): 79-92. |
[4] | ZHOU Ziyi, XIONG Hailing. Image Captioning Optimization Strategy Based on Deep Learning [J]. Computer Science, 2023, 50(8): 99-110. |
[5] | HUO Weile, JING Tao, REN Shuang. Review of 3D Object Detection for Autonomous Driving [J]. Computer Science, 2023, 50(7): 107-118. |
[6] | SUN Kaiwei, WANG Zhihao, LIU Hu, RAN Xue. Maximum Overlap Single Target Tracking Algorithm Based on Attention Mechanism [J]. Computer Science, 2023, 50(6A): 220400023-5. |
[7] | WANG Xiaotian, LI Bo, KANG Xiaodong, LIU Hanqing, HAN Junling, YANG Jingyi. Study on Phased Target Detection in CT Image [J]. Computer Science, 2023, 50(6A): 220200063-10. |
[8] | LIU Hui, TIAN Shuaihua. Study on Improvement of Deep Point Cloud Network Based on Multiple Emphasis Mechanisms [J]. Computer Science, 2023, 50(6A): 220400164-7. |
[9] | LIU Jiawei, DU Xin, FAN Fangzhao, XIE Chengbi. Design of Indoor Mapping and Navigation System Based on Multi-sensor [J]. Computer Science, 2023, 50(6A): 220300218-8. |
[10] | WU Han, NIE Jiahao, ZHANG Zhaowei, HE Zhiwei, GAO Mingyu. Deep Learning-based Visual Multiple Object Tracking:A Review [J]. Computer Science, 2023, 50(4): 77-87. |
[11] | LIU Hang, PU Yuanyuan, LYU Dahua, ZHAO Zhengpeng, XU Dan, QIAN Wenhua. Polarized Self-attention Constrains Color Overflow in Automatic Coloring of Image [J]. Computer Science, 2023, 50(3): 208-215. |
[12] | GUO Nan, LI Jingyuan, REN Xi. Survey of Rigid Object Pose Estimation Algorithms Based on Deep Learning [J]. Computer Science, 2023, 50(2): 178-189. |
[13] | HE Xionghui, TAN Jiefu, LIU Zhe, XUE Chao, YANG Shaowu, ZHANG Yongjun. Viewpoint-tolerant Scene Recognition Based on Segmentation of Sparse Point Cloud [J]. Computer Science, 2023, 50(1): 87-97. |
[14] | MENG Huaru, WU Guowei. Cloth Simulation Filtering Algorithm with Topography Cognition [J]. Computer Science, 2023, 50(1): 156-165. |
[15] | YANG Wen-kun, YUAN Xiao-pei, CHEN Xiao-feng, GUO Rui. Spatial Multi-feature Segmentation of 3D Lidar Point Cloud [J]. Computer Science, 2022, 49(8): 143-149. |
|