Computer Science ›› 2025, Vol. 52 ›› Issue (1): 298-306.doi: 10.11896/jsjkx.231100161
• Artificial Intelligence • Previous Articles Next Articles
MENG Lingjun1, CHEN Hongchang2, WANG Gengrun2
CLC Number:
[1]MARIA K,ILIAS D,ATHENA V.Bot-Detective:An explai-nable Twitter bot detection service with crowdsourcing functionalities[C]//12th International Conference on Management of Digital Ecosystems.New York:Association for Computing Machinery,2020:55-63. [2]WU Y H,FANG Y Z,SHANG S K,et al.A novel framework for detecting social bots with deep neural networks and active learning[J].European Journal of Medicinal Chemistry:Chimie Therapeutique,2021,211(1):1-16. [3]ABREU J,GONDIM J,RALHA C.Twitter Bot Detection with Reduced Feature Set[C]//2020 IEEE International Conference on Intelligence and Security Informatics(ISI).USA:Arlington,2020:1-6. [4]HU F X,LUO W H.Social robot account detection based onmulti-dimensional dynamic feature verification[J].Journal of Foshan University,2023,41(1):23-34. [5]SNEHA K,EMILIO F.Deep Neural Networks for Bot Detection[J].Information Sciences,2018,467(10):312-322. [6]GUO Q,XIE H,LI Y,et al.Social Bots Detection via Fusing BERT and Graph Convolutional Networks[J].Symmetry,2022,14(1):1-30. [7]HAYAWI K,MATHEW S,VENUGOPAL N,et al.DeeProBot:a hybrid deep neural network model for social bot detection based on user profile data[J].Social Network Analysis and Mi-ning,2022,12(1):1-19. [8]WU J,YE X,MAN Y.BotTriNet:A Unified and Efficient Embedding for Social Bots Detection via Metric Learning[C]//2023 11th International Symposium on Digital Forensics and Security(ISDFS).Turkey:Istanbul,2023:1-6. [9]WANG X,JI H Y,SHI C,et al.Heterogeneous Graph Attention Network[C]//The World Wide Web Conference(WWW’19).New York:Association for Computing Machinery,2019:2022-2032. [10]LI Y,JI Y,LI S,et al.Relevance-aware anomalous users’ detection in social network via graph neural network[C]//2021 International Joint Conference on Neural Networks(IJCNN).New York:IEEE,2021:1-8. [11]FENG S B,WAN H R,WANG N N.SATAR:A Self-supervised Approach to Twitter Account Representation Learning and its Application in Bot Detection[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management.New York:Association for Computing Machinery,2021:3808-3817. [12]FENG S B,WAN H R,WANG N N.BotRGCN:Twitter bot detection with relational graph convolutional networks[C]//Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining.New York:Association for Computing Machinery,2021:236-239. [13]YANG Y G,YANG R Y,LI Y Y,et al.RoSGAS:Adaptive Social Bot Detection with Reinforced Self-supervised GNN Architecture Search[J].ACM Transactions on the Web,2023,17(3):1-31. [14]XU K Y,ZHOU A M,CHEN A L,et al.Social bot detection based on active learning and relational graph convolutional neural networks[J].Journal of Sichuan University(Natural Science Edition),2023,60(5):121-129. [15]CAI Z J,TAN Z X,LEI Z Y,et al.LMBot:Distilling GraphKnowledge into Language Model for Graph-less Deployment in Twitter Bot Detection[J].arXiv:2306.17408,2023. [16]SIRUSSTARA J,ALEXANDER N,ALFARISY A,et al.Clickbait Headline Detection in Indonesian News Sites using Robustly Optimized BERT Pre-training Approach(RoBERTa)[C]//2022 3rd International Conference on Artificial Intelligence and Data Sciences(AiDAS).IPOH:Malaysia,2022:1-6. [17]VASWANI A,SHAZEER N,PARMAR N,et al.Attention IsAll You Need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems(NIPS’17).San Diego:NIPS,2017:6000-6010. [18]SCHLICHTKRULL M,KIPF T,BLOEM P,et al.Modeling relational data with graph convolutional networks[C]//European Semantic Web Conference.European:Springer,2018:593-607. [19]HU J,SHEN L,ALBANIE S,et al.Squeeze-and-Excitation Networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.2017:7132-7141. [20]LI Q M,HAN Z C,WU X M.Deeper Insights Into Graph Con-volutional Networks for Semi-Supervised Learning[C]//Thirty-Second AAAI Conference on Artificial Intelligence.New York:AAAI Press,2018:3538-3545. [21]JIANG Y,ZHAO T,CHAI Y,et al.Bidirectional LSTM-CRF models for keyword extraction in Chinese sport news[J].MIPPR 2019:Pattern Recognition and Computer Vision,2020,2(1):11-17. [22]STEFANO C,ROBERTO D,MARINELLA P,et al.Fame for sale:Efficient detection of fake Twitter followers[J].Decision Support Systems,2015,80(9):56-71. [23]FENG S B,WAN H,WANG N,et al.TwiBot-20:A Comprehensive Twitter Bot Detection Bench-mark[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management,New York:ACM,2020:4485-4494. [24]SHI S H,QIAO K,CHEN J.MGTAB:A Multi-RelationalGraph-Based Twitter Account Detection Benchmark[C]//IEEE Conference on Computer Vision and Pattern Recognition.New York:IEEE,2023:1-14. [25]WEI Y L.Classification and regression trees[J].Wiley Interdisciplinary Reviews:Data Mining and Knowledge Discovery,2011,1(1):3-7. [26]BREIMAN L.Random forests[J].Machine Learning,2004,45:5-32. [27]SHA A,WANG B,WU X,et al.Semi-Supervised Classification for Hyperspectral Images Using Edge-Conditioned Graph Con-volutional Networks[C]//IEEE International Geoscience and Remote Sensing Symposium(IGARSS 2019).Japan:Yokohama,2019:2690-2693. [28]PETAR V,GUILLEM C,ARANTXA C,et al.Graph attention networks[C]//International Conference on Learning Representations(ICLR).Washington:ICLR,2018. [29]WILL H,YING Z T,JURE L.Inductive representation learning on large graphs[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems(NIPS’17).USA:Curran Associates Inc.2017:1025-1035. [30]HU Z H,DONG Y X,WANG K S,et al.Heterogeneous graph transformer[C]//Proceedings of The Web Conference 2020(WWW’20).USA:Association for Computing Machinery,2020:2704-2710. [31]YE S,TAN Z,LEI Z,et al.Hofa:Twitter bot detection with homophily-oriented augmentation and frequency adaptive attention[J].arXiv:2306.12870,2023. [32]SHI S H,QIAO K,YANG J,et al.RF-GNN:Random Forest boosted graph neural network for social bot detection[J].arXiv:2304.08239,2023. [33]LV Q S,DING M,LIU Q,et al.Are we really making much progress?Revisiting,benchmarking and refining heterogeneous graph neural networks[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining.New York:ACM,2021:1150-1160. [34]LU H Y,LIU F,WANG Y B.Social Bot Detection for Dynamic Social Networks Based on Link Prediction[J].Journal of Information Engineering University,2024,25(3):285-291. |
[1] | YAN Qiuyan, SUN Hao, SI Yuqing, YUAN Guan. Multimodality and Forgetting Mechanisms Model for Knowledge Tracing [J]. Computer Science, 2024, 51(7): 133-139. |
[2] | MAO Xingjing, WEI Yong, YANG Yurui, JU Shenggen. KHGAS:Keywords Guided Heterogeneous Graph for Abstractive Summarization [J]. Computer Science, 2024, 51(7): 278-286. |
[3] | PENG Bo, LI Yaodong, GONG Xianfu, LI Hao. Method for Entity Relation Extraction Based on Heterogeneous Graph Neural Networks and TextSemantic Enhancement [J]. Computer Science, 2024, 51(6A): 230700071-5. |
[4] | HOU Lei, LIU Jinhuan, YU Xu, DU Junwei. Review of Graph Neural Networks [J]. Computer Science, 2024, 51(6): 282-298. |
[5] | WANG Xiaolong, WANG Yanhui, ZHANG Shunxiang, WANG Caiqin, ZHOU Yuhao. Gender Discrimination Speech Detection Model Fusing Post Attributes [J]. Computer Science, 2024, 51(6): 338-345. |
[6] | ZHANG Zebao, YU Hannan, WANG Yong, PAN Haiwei. Combining Syntactic Enhancement with Graph Attention Networks for Aspect-based Sentiment Classification [J]. Computer Science, 2024, 51(5): 200-207. |
[7] | LIAO Jinzhi, ZHAO Hewei, LIAN Xiaotong, JI Wenliang, SHI Haiming, ZHAO Xiang. Contrastive Graph Learning for Cross-document Misinformation Detection [J]. Computer Science, 2024, 51(3): 14-19. |
[8] | PAN Lei, LIU Xin, CHEN Junyi, CHENG Zhangtao, LIU Leyuan, ZHOU Fan. Event Prediction Based on Dynamic Graph with Local Data Augmentation [J]. Computer Science, 2024, 51(3): 118-127. |
[9] | SUN Shounan, WANG Jingbin, WU Renfei, YOU Changkai, KE Xifan, HUANG Hao. TMGAT:Graph Attention Network with Type Matching Constraint [J]. Computer Science, 2024, 51(3): 235-243. |
[10] | LIN Huang, LI Bicheng. Aspect-based Sentiment Analysis Based on BERT Model and Graph Attention Network [J]. Computer Science, 2024, 51(11A): 240400018-7. |
[11] | SUN Pengzhao, BI Kejun, TANG Chao, LI Dongfen, YING Shi, WANG Ruijin. Risk Assessment Model for Industrial Chain Based on Neighbor Sampling and GraphAttention Mechanism [J]. Computer Science, 2024, 51(10): 218-226. |
[12] | WU Jiawei, FANG Quan, HU Jun, QIAN Shengsheng. Pre-training of Heterogeneous Graph Neural Networks for Multi-label Document Classification [J]. Computer Science, 2024, 51(1): 143-149. |
[13] | YANG Zhizhuo, XU Lingling, Zhang Hu, LI Ru. Answer Extraction Method for Reading Comprehension Based on Frame Semantics and GraphStructure [J]. Computer Science, 2023, 50(8): 170-176. |
[14] | SHAN Xiaohuan, SONG Rui, LI Haihai, SONG Baoyan. Event Recommendation Method with Multi-factor Feature Fusion in EBSN [J]. Computer Science, 2023, 50(7): 60-65. |
[15] | ZHANG Tao, CHENG Yifei, SUN Xinxu. Graph Attention Networks Based on Causal Inference [J]. Computer Science, 2023, 50(6A): 220600230-9. |
|