Computer Science ›› 2025, Vol. 52 ›› Issue (2): 20-32.doi: 10.11896/jsjkx.240900163
• Discipline Frontier • Previous Articles Next Articles
ZHANG Tao
CLC Number:
[1]CRAWFORD K.Atlas of AI:Power,Politics,and the Planetary Costs of Artificial Intelligence[M].New Haven:Yale University Press,2021:97-98. [2]EUROPEAN COMMISSION.White Paper on Artificial Intelligence:a European approach to excellence and trust[EB/OL].[2024-11-06].https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52020DC0065. [3]KAPLAN J.Generative Artificial Intelligence:What EveryoneNeeds to Know[M].New York:Oxford University Press,2024:31-32. [4]KHAN M,HANNA A.The Subjects and Stages of AI Dataset Development:A Framework for Dataset Accountability[J].Ohio State Technology Law Journal,2023,19(2):171-256. [5]DING X D.On Data Institution that Promotes Artificial Intelligence[J].China Law Review,2023(6):175-191. [6]KURAPATI S,GILLI L.Synthetic Data:A Convergence be-tween Innovation and GDPR[J].Journal of Open Access to Law,2023(11):1-12. [7]HEAVEN W D.Synthetic data for AI[EB/OL].[2024-11-06].https://www.technologyreview.com/2022/02/23/1044965/ai-synthetic-data-2/. [8]HRADEC J,CRAGLIA M,DI L M,et al.Multipurpose synthe-tic population for policy applications[M].Luxembourg:Publications Office of the European Union,2022:15. [9]ICO.Privacy-enhancing technologies(PETs) [EB/OL].[2024-11-06].https://ico.org.uk/for-organisations/uk-gdpr-guidance-and-resources/data-sharing/privacy-enhancing-technologies/. [10]BELLOVIN S M,DUTTA P K,REITINGER N.Privacy and Synthetic Datasets[J].Stanford Technology Law Review,2019,22(1):1-52. [11]LEE P.Synthetic Data and the Future of AI [EB/OL].[2024-11-06].https://ssrn.com/abstract=4722162. [12]ALEXANDER L.Is Synthetic Data the Future of AI? [EB/OL].[2024-11-06].https://www.gartner.com/en/newsroom/press-releases/2022-06-22-is-synthetic-data-the-future-of-ai. [13]GONZALES A,GURUSWAMY G,SMITH S R.Synthetic data in health care:A narrative review[J].PLOS Digit Health,2023,2(1):e0000082. [14]IVE J,VIANI N,KAM J,et al.Generation and evaluation of artificial mental health records for Natural Language Processing[J].NPJ Digital Medicine,2020,69(3):1-9. [15]CAIRO M.Synthetic Data and GDPR Compliance:How Artificial Intelligence Might Resolve the Privacy-Utility Tradeoff[J].Journal of Technology Law & Policy,2023(28):71-113. [16]STADLER T,OPRISANU B,TRONCOSO C.Synthetic Data --Anonymisation Groundhog Day[EB/OL].[2024-11-06].https://doi.org/10.48550/arXiv.2011.07018. [17]TAORI R,HASHIMOTO T B.Data feedback loops:model-driven amplification of dataset biases[C]//Proceedings of the 40th International Conference on Machine Learning(ICML'23),New York:JMLR.org,2023:33883-33920. [18]NIKOLENKO S I.Synthetic Data for Deep Learning[M].Cham:Springer,2021:2. [19]NASSIF J,TEKLI J,KAMRADT M.Synthetic Data:Revolu-tionizing the Industrial Metaverse[M].Cham:Springer,2024:10-11. [20]FIGUERIRA A,VAZ B.Survey on Synthetic Data Generation,Evaluation Methods and GANs[J].Mathematics,2022,10(15):2733. [21]HACKER P.A legal framework for AI training data—from first principles to the Artificial Intelligence Act[J].Law,Innovation and Technology,2021,13(2):257-301. [22]ZARSKY T Z.Incompatible:The GDPR in the Age of Big Data[J].Seton Hall Law Review,2017,47(4):995-1020. [23]ZHOU H H.Legal position of personal information protection[J].Studies in Law and Business,2020,37(3):44-56. [24]ZARSKY T Z.The Privacy-Innovation Conundrum[J].Lewis & Clark Law Review,2015,19(1):115-168. [25]SCHWARTZ P M,SOLOVE D J.The PII Problem:Privacy and a New Concept of Personally Identifiable Information[J].New York University Law Review,2011,86(6):1814-1894. [26]ELLIOT M,HARA K,RAAB C,et al.Functional anonymisa-tion:Personal data and the data environment[J].Computer Law &Security Review,2018,34(2):204-221. [27]RAGHUNATHAN T E.Synthetic Data[J].Annual Review of Statistics and Its Application,2021(8):129-140. [28]ZHANG X B.Interpretation of the Personal Information Protection Law of the People's Republic of China[M].Beijing:People's Publishing House,2021:41. [29]QI A M,ZHANG Z.Identification and reidentification:The definition of personal information and the legislative choice[J].Journal of Chongqing University(Social Science Edition),2018(2):119-131. [30]PURTOVA N.The law of everything:Broad concept of personal data and future of EU data protection law[J].Law,Innovation and Technology,2018,10(1):40-81. [31]CORTE L D.Scoping personal data:Towards a nuanced interpretation of the material scope of EU data protection law[J].European Journal of Law and Technology,2019,10(1):1-26. [32]LUPTON D.How do data come to matter? Living and becoming with personal data[J].Big Data & Society,2018,5(2):1-11. [33]EMAM K E,ARBUCKLE L.Anonymizing Health Data[M].Sebastopol:O'Reilly Media,2014:4-5. [34]JI S L,MITTAL P,BEYAH R.Graph Data Anonymization,De-Anonymization Attacks,and De-Anonymizability Quantification:A Survey[J].IEEE Communications Surveys & Tutorials,2017,19(2):1305-1326. [35]RUBINSTEIN I S,HARTZOG W.Anonymization and Risk[J].Washington Law Review,2016,91(2):703-760. [36]OHM P.Broken Promises of Privacy:Responding to the Surprising Failure of Anonymization[J].UCLA Law Review,2010,57(6):1701-1778. [37]BRASHER E A.Addressing the Failure of Anonymization:Guidance from the European Union's General Data Protection Regulation[J].Columbia Business Law Review,2018(1):209-253. [38]JORDON J,SZPRUCH L,HOUSSIAU F,et al.Synthetic Data-what,why and how?[EB/OL].[2024-11-07].https://doi.org/10.48550/arXiv.2205.03257. [39]OFFENHUBER D.Shapes and frictions of synthetic data[J].Big Data & Society,2024,11(2):1-16. [40]JACOBSEN B N.Machine learning and the politics of synthetic data[J].Big Data & Society,2023,10(1):1-12. [41]EMAM K E,MOSQUERA L,HOPTROFF R.Practical Syn-thetic Data Generation[M].Sebastopol:O'Reilly Media,2020:1,2-3,4-6,19-20,69. [42]GURSAKAL N,ÇELIK S,BIRISÇI E.Synthetic Data for Deep Learning[M].New York:Apress Media,2022:1,3,5-6. [43]JACOBSEN B N.The Logic of the Synthetic Supplement in Algorithmic Societies[J].Theory,Culture & Society,2024,41(4):41-56. [44]BUOLAMWINI J,GEBRU T.Gender Shades:IntersectionalAccuracy Disparities in Commercial Gender Classification[J].Proceedings of Machine Learning Research,2018(81):1-15. [45]CHEN R J,LU M Y,CHEN T Y,et al.Synthetic data in machine learning for medi-cine and healthcare[J].Nature Biome-dical Engineering,2021(5):493-497. [46]MAYSON S G.Bias in,Bias out[J].Yale Law Journal,2019,128(8):2218-2301. [47]PARDEDE S,KOVA V B.Distinguishing the Need to Belong and Sense of Belongingness:The Relation between Need to Belong and Personal Appraisals under Two Different Belongingness-Conditions[J].European Journal of Investigation in Health,Psychology and Education,2023,13(2):331-344. [48]CRISTOFARO E D.Synthetic Data:Methods,Use Cases,andRisks[EB/OL].[2024-11-07].https://doi.org/10.48550/ar-Xiv.2303.01230. [49]FCA.Using Synthetic Data in Financial Services[EB/OL].[2024-11-07].https://www.fca.org.uk/publication/corporate/report-using-synthetic-data-in-financial-services.pdf. [50]RUSCH T K,BRONSTEIN M M,MISHRA S.A Survey on Oversmoothing in Graph Neural Networks[EB/OL].[2024-11-07].https://doi.org/10.48550/arXiv.2303.10993. [51]LIU R B,WEI J,LIU F Y,et al.Best Practices and Lessons Learned on Synthetic Data [EB/OL].[2024-11-07].https://doi.org/10.48550/arXiv.2404.07503. [52]ZHI Z F.Information Content Governance of Large Model of Generative Artificial Intelligence[J].Tribune of Political Science and Law,2023,41(4):34-48. [53]SHUMAILOY I,SHUMAYLOY Z,ZHAO Y R,et al.TheCurse of Recursion:Training on Generated Data Makes Models Forget[EB/OL].[2024-11-07].https://doi.org/10.48550/arXiv.2305.17493. [54]GABRIEL I.Artificial Intelligence,Values,and Alignment[J].Minds and Machines,2020(30):411-437. [55]RUSSELL S.Human Compatible:Artificial Intelligence and the Problem of Control[M].New York:Viking Press,2019:137. [56]ZHOU X H,SU Z,EISAPE T,et al.Is this the real life? Is this just fantasy? The Misleading Success of Simulating Social Interactions With LLMs[EB/OL].[2024-11-07].https://doi.org/10.48550/arXiv.2403.05020. [57]ZOU A,WANG Z F,CARLINI N,et al.Universal and Transferable Adversarial Attacks on Aligned Language Models[EB/OL].[2024-11-08].https://doi.org/10.48550/arXiv.2307.15043. [58]GIUFFRE M,SHUNG D L.Harnessing the power of synthetic data in healthcare:innovation,application,and privacy[J].NPJ Digital Medicine,2023,6(1):1-8. [59]WHITNEY C D,NORMAN J.Real Risks of Fake Data:Synthetic Data,Diversity-Washing and Consent Circumvention[EB/OL].[2024-11-08].https://doi.org/10.1145/3630106.3659002. [60]BROWNSWORD R.Law 3.0:Rules,Regulation,and Technology[M].New York:Routledge,2021:32-33. [61]VILJOEN S.A Relational Theory of Data Governance[J].Yale Law Journal,2021,131(2):573-654. [62]WACHTER S,MITTELSTADT B.A Right to Reasonable Inferences:Re-Thinking Data Protection Law in the Age of Big Data and AI[J].Columbia Business Law Review,2019(2):494-620. [63]GAL M S,LYNSKEY O.Synthetic Data:Legal Implications of the Data-Generation Revolution[J].Iowa Law Review,2024,109(3):1087-1156. [64]BEDUSCHI A.Synthetic data protection:Towards a paradigm change in data regulation?[J].Big Data & Society,2024,11(1):1-5. [65]HUANG W Y.On Precautionary Rule of Law[J].Chinese Journal of Law,2024,46(2):20-38. [66]EBERS M.Standardizing AI:The Case of the European Commission's Proposal for an ‘Artificial Intelligence Act'[M] // The Cambridge Handbook of Artificial Intelligence:Global Perspectives on Law and Ethics.Cambridge:Cambridge University Press,2022:331. [67]METROPOLIS N,ULAM S.The Monte Carlo method[J].Journal of the American Statistical Association,1949,44(247):335-341. [68]ABUFADDA M,MANSOUR K.A Survey of Synthetic DataGeneration for Machine Learning[C]// 2021 22nd International Arab Conference on Information Technology.Muscat,Oman,2021:1-7. [69]ZHAO P.The Legal Implications of ‘Ethical' Governance ofTechnology[J].Peking University Law Journal,2022,34(5):1201-1220. [70]JOBIN A,LENCA M,VAYENA E.The global landscape of AI ethics guidelines[J].Nature Machine Intelligence,2019,1(9):389-399. [71]ZHOU J L,CHEN F.AI ethics:from principles to practice[J].AI & SOCIETY,2023,38(6):2693-2703. [72]CABALLERO I,GUALO F,RODRIGUEZ M,et al.MaturityModels for Data Governance[M]//Data Governance.Cham:Springer,2023:139. [73]ABRAHAM R,SCHNEIDER J,BROCKE J.Data governance:A conceptual framework,structured review,and research agenda[J].International Journal of Information Management,2019(49):424-438. [74]ALMASLUKH A,ALAMEER A,ALSALEH H,et al.DataMesh Meets Blockchain[J].International Journal of Computational Intelligence Systems,2024(17):1-15. [75]MASOOD I,DAUD A,WANG Y L,et al.A blockchain-based system for patient data privacy and security[J].Multimedia Tools and Applications,2024(83):60443-60467. [76]HASAN H R,SALAH K.Combating Deepfake Videos Using Blockchain and Smart Contracts[J].IEEE Access,2019(7):41596-41606. [77]PESTANA G,ANTUNES W,CARVALHO J.Digital Chain of Custody Operational Framework[C]//2023 IEEE International Workshop on Technologies for Defense and Security.Rome,Italy,2023:417-422. [78]LESSIG L.Code:Version 2.0[M].Cambridge:Basic Books,2006:6-7. [79]ZACCAGNINO R,CAPO C,GUARINO A,et al.Techno-regulation and intelligent safeguards[J].Multimedia Tools and Applications,2021(80):15803-15824. [80]HILDEBRANDT M.Legal Protection by Design:Objections and Refutations[J].Legisprudence,2011,5(2):223-248. [81]ALMADA M.Regulation by Design and the Governance ofTechnological Futures[J].European Journal of Risk Regulation,2023,14(4):697-709. [82]VANNA F D.The Construction of a Normative Framework for Technology-Driven Innovations:A Legal Theory Perspective[M] // Use and Misuse of New Technologies.Cham:Springer,2019:193-194. |
[1] | LIANG Binghao, ZHANG Chuangang, YUAN Mingming. Large Model Driven AI Application Service Platform [J]. Computer Science, 2025, 52(6A): 240900022-4. |
[2] | LIU Qingyun, YOU Xiong, ZHANG Xin, ZUO Jiwei, LI Jia. Review of Path Planning Algorithms for Mobile Robots [J]. Computer Science, 2025, 52(6A): 240900074-10. |
[3] | SU Zhiyuan, ZHAO Lixu, HAO Zhiheng, BAI Rufeng. Suvery of Artificial Intelligence Ensuring eVTOL Flight Safety in the Context of Low-altitudeEconomy [J]. Computer Science, 2025, 52(6A): 250200050-13. |
[4] | YANG Jixiang, JIANG Huiping, WANG Sen, MA Xuan. Research Progress and Challenges in Forest Fire Risk Prediction [J]. Computer Science, 2025, 52(6A): 240400177-8. |
[5] | WANG Yun, ZHAO Jianming, GUO Yifeng, ZHOU Huanhuan, ZHOU Wuai, ZHANG Wanzhe, FENG Jianhua. Automation and Security Strategies and Empirical Research on Operation and Maintenance of Digital Government Database [J]. Computer Science, 2025, 52(6A): 240500045-8. |
[6] | TU Ji, XIAO Wendong, TU Wenji, LI Lijian. Application of Large Language Models in Medical Education:Current Situation,Challenges and Future [J]. Computer Science, 2025, 52(6A): 240400121-6. |
[7] | TAN Zhengyuan, ZHONG Jiaqing, CHEN Juan. AI+HPC:An Overview of Supercomputing System Software and Application Technology Development Driven by “AI+” [J]. Computer Science, 2025, 52(5): 1-10. |
[8] | WANG Yifei, ZHANG Shengjie, XUE Dizhan, QIAN Shengsheng. Self-supervised Backdoor Attack Defence Method Based on Poisoned Classifier [J]. Computer Science, 2025, 52(4): 336-342. |
[9] | WANG Yuan, HUO Peng, HAN Yi, CHEN Tun, WANG Xiang, WEN Hui. Survey on Deep Learning-based Meteorological Forecasting Models [J]. Computer Science, 2025, 52(3): 112-126. |
[10] | JIANG Rui, YANG Kaihui, WANG Xiaoming, LI Dapeng, XU Youyun. Attentional Interaction-based Deep Learning Model for Chinese Question Answering [J]. Computer Science, 2024, 51(6): 325-330. |
[11] | GUO Shangzhi, LIAO Xiaofeng, XIAN Kaiyi. Logical Regression Click Prediction Algorithm Based on Combination Structure [J]. Computer Science, 2024, 51(2): 73-78. |
[12] | WANG Wentong, ZHANG Zhijun, ZHANG Mingyang. Review of Key Technologies,Research Progress and Applications of Metaverse [J]. Computer Science, 2024, 51(12): 2-11. |
[13] | RAO Yi, YUAN Bochuan, YUAN Yubo. Recognition Method of Online Classroom Interaction Based on Learner State [J]. Computer Science, 2024, 51(11A): 231200133-9. |
[14] | WANG Shuaiwei, LEI Jie, FENG Zunlei, LIANG Ronghua. Review of Visual Representation Learning [J]. Computer Science, 2024, 51(11): 112-132. |
[15] | YAO Tianlei, CHEN Xiliang, YU Peiyi. Review of Generative Reinforcement Learning Based on Sequence Modeling [J]. Computer Science, 2024, 51(11): 213-228. |
|