Computer Science ›› 2025, Vol. 52 ›› Issue (6A): 240400177-8.doi: 10.11896/jsjkx.240400177
• Artificial Intelligence • Previous Articles Next Articles
YANG Jixiang, JIANG Huiping, WANG Sen, MA Xuan
CLC Number:
[1]BAI N,WANG B,WU Y D,et al.Overview of global forest fires in 2021[J].Fire Science and Technology,2022,41(4):705. [2]WU Y Y,SHU L F,WANG M Y,et al.Overview of forest fires in the world in recent years[J].Temperate Forestry Research,2022,5(4):49-54. [3]BARMPOUTIS P,PAPAIOANNOU P,DIMITROPOULOS K,et al.A review on early forest fire detection systems using optical remote sensing[J].Sensors,2020,20(22):6442. [4]HUTCHINSON M,STEIN J,STEIN J,et al.GEODATA 9 s DEM and D8:Digital Elevation Model Version 3 and Flow Direction Grid 2008[EB/OL].http://pid.geoscience.gov.au/dataset/ga/66006. [5]ABATZOGLOU J T,DOBROWSKI S Z,PARKS S A,et al.TerraClimate,a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015[J].Scientific data,2018,5(1):1-12. [6]SAYAD Y O,MOUSANNIF H,AL MOATASSIME H J.Predictive modeling of wildfires:A new dataset and machine learning approach[J].Fire Safety Journal,2019:104:130-146. [7]MONACO S,GRECO S,FARASIN A,et al.Attention to fires:Multi-channel deep learning models for wildfire severity prediction[J].Applied Sciences,2021,11(22):11060. [8]SINGLA S,MUKHOPADHYAY A,WILBURM,et al.Wild-firedb:An open-source dataset connecting wildfire occurrence with relevant determinants[C]//NeurIPS Thirty-fifth Annual Conference on Neural Information Processing Systems.2021. [9]HU X,ZHANG P,BAN Y.Large-scale burn severity mapping in multispectral imagery using deep semantic segmentation models[J].ISPRS Journal of Photogrammetry and Remote Sensing,2023,196:228-240. [10]HUOT F,HU R L,GOYAL N,et al.Next day wildfire spread:A machine learning dataset to predict wildfire spreading from remote-sensing data[J].IEEE Transactions on Geoscience and Remote Sensing,2022,60:1-13. [11]SHEN S,SENEVIRATNE S,WANYAN X.Firerisk:A remote sensing dataset for fire risk assessment with benchmarks using supervised and self-supervised learning[C]//International Conference on Digital Image Computing:Techniques and Applications(DICTA).IEEE.2023:189-196. [12]JAISWAL R K,MUKHERJEE S,RAJU K D,et al.Forest fire risk zone mapping from satellite imagery and RS[J].International journal of applied earth observation and geoinformation,2002,4(1):1-10. [13]GUO F,SU Z,WANG G,et al.Wildfire ignition in the forests of southeast China:Identifying drivers and spatial distribution to predict wildfire likelihood[J].Applied Geography,2016,66:12-21. [14]STOCKS B J,LAWSON B D,ALEXANDER M E,et al.The Canadian forest fire danger rating system:an overview[J].The Forestry Chronicle,1989,65(6):450-457. [15]FINNEY M A,MCHUGH C W,GRENFELL I C,et al.A simulation of probabilistic wildfire risk components for the continental United States[J].Stochastic Environmental Research and Risk Assessment,2011,25:973-1000. [16]SIMARD S J.Fire severity,changing scales,and how thingshang together[J].International Journal of Wildland Fire,1991,1(1):23-34. [17]QU J,CUI X.Automatic machine learning framework for forest fire forecasting[C]//Journal of Physics:Conference Series.IOP Publishing,2020,1651(1):012116. [18]LIN H,LIU X,WANG X,et al.A fuzzy inference and big data analysis algorithm for the prediction of forest fire based on rechargeable wireless sensor networks[J].Sustainable Computing:Informatics and Systems,2018,18:101-111. [19]BUI D T,VAN LE H,HOANG N D.RS-based spatial prediction of tropical forest fire danger using a new hybrid machine learning method[J].Ecological Informatics,2018,48:104-116. [20]GAO B,SHAN Y,LIU X et al.Prediction and driving factors of forest fire occurrence in Jilin Province,China[J].Journal of Forestry Research,2024,35(21):21-26. [21]LI D.Study on the relationship between forest fires and meteorological factors in key areas of Sichuan Province[D].Beijing:Beijing Forestry University,2013. [22]ADHIKARI D,CHEN W,GUO Y,et al.Wildfire ProgressionPrediction and Validation Using Satellite Data and Remote Sensing in Sonoma,California[C]//2023 IEEE International Conference on Service-Oriented System Engineering(SOSE).IEEE,2023:262-271. [23]LIANG H,ZHANG M,WANG H.A neural network model for wildfire scale prediction using meteorological factors[J].IEEE Access,2019,7:176746-176755. [24]CHANG Y,ZHU Z,BU R,et al.Predicting fire occurrence patterns with loRStic regression in Heilongjiang Province,China[J].Landscape Ecology,2013,28(10):1989-2004. [25]PAN J,WANG W,LI J.Building probabilistic models of fire oc-currence and fire risk zoning using loRStic regression in Shanxi Province,China[J].Natural Hazards,2016,81(3):1879-1899. [26]SURYABHAGAVAN K V,ALEMU M,BALAKRISHNANM.RS-based multi-criteria decision analysis for forest fire susceptibility mapping:a case study in Harenna forest,southwestern Ethiopia[J].Tropical Ecology,2016,57(1):33-43. [27]HUESCA M,LITAGO J,PALACIOS-ORUETA A,et al.As-sessment of forest fire seasonality using MODIS fire potential:A time series approach[J].Agricultural and Forest Meteorology,2009,149(11):1946-1955. [28]JAISWAL R K,MUKHERJEE S,RAJU K D,et al.Forest fire risk zone mapping from satellite imagery and RS[J].International Journal of Applied Earth Observation and Geoinformation,2002,4(1):1-10. [29]SAYAD Y O,MOUSANNIF H,AL MOATASSIME H.Predictive modeling of wildfires:A new dataset and machine learning approach[J].Fire safety journal,2019,104:130-146. [30]MALIK A,JALIN N,RANI S,et al.Wildfire Risk Prediction and Detection using Machine Learning in San Diego,California[C]//2021 IEEE SmartWorld,Ubiquitous Intelligence & Computing,Advanced & Trusted Computing,Scalable Computing & Communications,Internet of People and Smart City Innovation(SmartWorld/SCALCOM/UIC/ATC/IOP/SCI).IEEE,2021:622-629. [31]KAUR P.Forest fire prediction using heterogeneous datasources and machine learning methods[D].University of Waterloo,2023. [32]YANG S,LUPASCU M,MEEL K S.Predicting forest fire using remote sensing data and machine learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2021:14983-14990. [33]FIRMS N.Fire information for resource management system[EB/OL].https://firms.modaps.eosdis.nasa.gov/map. [34]RUBÍ J N S,DE CARVALHO P H P,GONDIM P R L.Application of machine learning models in the behavioral study of forest fires in the Brazilian Federal District region[J].Engineering Applications of Artificial Intelligence,2023,118:105649. [35]DE VASCONCELOS M J P,SILVA S,TOMEM,et al.Spatial prediction of fire ignition probabilities:comparing loRStic regression and neural networks[J].Photogrammetric engineering and remote sensing,2001,67(1):73-81. [36]TUYEN T T,JAAFARI A,YEN H P H,et al.Mapping forest fire susceptibility using spatially explicit ensemble models based on the locally weighted learning algorithm[J].Ecological Informatics,2021,63:101292. [37]CHEN X F,LIU L,LI J G,et al.Application and research progress of satellite remote sensing fire point monitoring[J].Journal of Remote Sensing,2020,24(5). [38]POURGHASEMI H R,GAYEN A,LASAPONARA R,et al.Application of learning vector quantization and different machine learning techniques to assessing forest fire influence factors and spatial modelling[J].Environmental research,2020,184:109321. [39]SHMUEL A,HEIFETZ E.Global wildfire susceptibility mapping based on machine learning models[J].Forests,2022,13(7):1050. [40]ZHANG L,WANG M,DING Y,et al.FBC-ANet:A semantic segmentation model for UAV forest fire images combining boundary enhancement and context awareness[J].Drones,2023,7(7):456. [41]ABDUSALOMOV A B,ISLAM B M D S,NASIMOV R,et al.An improved forest fire detection method based on the detectron2 model and a deep learning approach[J].Sensors,2023,23(3):1512. [42]HODGES J L,LATTIMER B Y.Wildland fire spread modeling using convolutional neural networks[J].Fire technology,2019,55:2115-2142. [43]LIN X,LI Z,CHEN W,et al.Forest fire prediction based onlong-and short-term time-series network[J].Forests,2023,14(4):778. [44]MIAO X,LI J,MU Y,et al.Time Series Forest Fire Prediction Based on Improved Transformer[J].Forests,2023,14(8):1596. [45]DENG J,DONG W,SOCHER R,et al.Imagenet:A large-scale hierarchical image database[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2009:248-255. |
[1] | TU Ji, XIAO Wendong, TU Wenji, LI Lijian. Application of Large Language Models in Medical Education:Current Situation,Challenges and Future [J]. Computer Science, 2025, 52(6A): 240400121-6. |
[2] | WANG Yun, ZHAO Jianming, GUO Yifeng, ZHOU Huanhuan, ZHOU Wuai, ZHANG Wanzhe, FENG Jianhua. Automation and Security Strategies and Empirical Research on Operation and Maintenance of Digital Government Database [J]. Computer Science, 2025, 52(6A): 240500045-8. |
[3] | WANG Baohui, GAO Zhan, XU Lin, TAN Yingjie. Research and Implementation of Mine Gas Concentration Prediction Algorithm Based on Deep Learning [J]. Computer Science, 2025, 52(6A): 240400188-7. |
[4] | LIU Chengming, LI Haixia, LI Shaochuan, LI Yinghao. Ensemble Learning Model for Stock Manipulation Detection Based on Multi-scale Data [J]. Computer Science, 2025, 52(6A): 240700108-8. |
[5] | WANG Jiamin, WU Wenhong, NIU Hengmao, SHI Bao, WU Nier, HAO Xu, ZHANG Chao, FU Rongsheng. Review of Concrete Defect Detection Methods Based on Deep Learning [J]. Computer Science, 2025, 52(6A): 240900137-12. |
[6] | HAO Xu, WU Wenhong, NIU Hengmao, SHI Bao, WU Nier, WANG Jiamin, CHU Hongkun. Survey of Man-Machine Distance Detection Method in Construction Site [J]. Computer Science, 2025, 52(6A): 240700098-10. |
[7] | CHEN Shijia, YE Jianyuan, GONG Xuan, ZENG Kang, NI Pengcheng. Aircraft Landing Gear Safety Pin Detection Algorithm Based on Improved YOlOv5s [J]. Computer Science, 2025, 52(6A): 240400189-7. |
[8] | GAO Junyi, ZHANG Wei, LI Zelin. YOLO-BFEPS:Efficient Attention-enhanced Cross-scale YOLOv10 Fire Detection Model [J]. Computer Science, 2025, 52(6A): 240800134-9. |
[9] | ZHANG Hang, WEI Shoulin, YIN Jibin. TalentDepth:A Monocular Depth Estimation Model for Complex Weather Scenarios Based onMultiscale Attention Mechanism [J]. Computer Science, 2025, 52(6A): 240900126-7. |
[10] | CHEN Tianpeng, HU Jianwen, LI Haitao. Ships Detection in Remote Sensing Images Based on Improved PPYOLOE-R [J]. Computer Science, 2025, 52(6A): 240600118-8. |
[11] | HUANG Hong, SU Han, MIN Peng. Small Target Detection Algorithm in UAV Images Integrating Multi-scale Features [J]. Computer Science, 2025, 52(6A): 240700097-5. |
[12] | ZHOU Lei, SHI Huaifeng, YANG Kai, WANG Rui, LIU Chaofan. Intelligent Prediction of Network Traffic Based on Large Language Model [J]. Computer Science, 2025, 52(6A): 241100058-7. |
[13] | LIANG Binghao, ZHANG Chuangang, YUAN Mingming. Large Model Driven AI Application Service Platform [J]. Computer Science, 2025, 52(6A): 240900022-4. |
[14] | GUAN Xin, YANG Xueyong, YANG Xiaolin, MENG Xiangfu. Tumor Mutation Prediction Model of Lung Adenocarcinoma Based on Pathological [J]. Computer Science, 2025, 52(6A): 240700010-8. |
[15] | TAN Jiahui, WEN Chenyan, HUANG Wei, HU Kai. CT Image Segmentation of Intracranial Hemorrhage Based on ESC-TransUNet Network [J]. Computer Science, 2025, 52(6A): 240700030-9. |
|