Computer Science ›› 2025, Vol. 52 ›› Issue (2): 145-157.doi: 10.11896/jsjkx.231100173
• Database & Big Data & Data Science • Previous Articles Next Articles
XIN Yongjie1, CAI Jianghui1,3, HE Yanting1, SU Meihong1,2, SHI Chenhui1, YANG Haifeng1,2
CLC Number:
[1]SOLORIO-FERNÁNDEZ S,CARRASCO-OCHOA J A,MARTÍ-NEZ-TRINIDAD J F.A review of unsupervised feature selection methods[J].Artificial Intelligence Review,2020,53(2):907-948. [2]NIE F,WANG X,JORDAN M,et al.The constrained laplacian rank algorithm for graph-based clustering[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2016:1969-1976. [3]KANG Z,PENG C,CHENG Q.Twin learning for similarity and clustering:A unified kernel approach[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2017. [4]HUANG D,WANG C D,PENG H,et al.Enhanced ensembleclustering via fast propagation of cluster-wise similarities[J].IEEE Transactions on Systems,Man,and Cybernetics:Systems,2021,51(1):508-520. [5]ZHANG C,FU H,HU Q,et al.Generalized latent multi-view subspace clustering[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2018,42(1):86-99. [6]PENG H,WANG H,HU Y,et al.Multi-dimensional clustering through fusion of high-order similarities[J].Pattern Recognition,2022,121:108108. [7]XU K,CHEN L,WANG S.A Multi-view Kernel Clusteringframework for Categorical sequences[J].Expert Systems with Applications,2022,197:116637. [8]LIU J,CAO F,GAO X Z,et al.A cluster-weighted kernel k-means method for multi-view clustering[C]//Proceedings of the Aaai Conference on Artificial Intelligence.2020:4860-4867. [9]XIA D X,YANG Y,WANG H,et al.Late Fusion Multi-View Clustering Based on Local Multi-Kernel Learning [J].Journal of Computer Research and Development,2020 57(8):1627-1638. [10]WANG H,YANG Y,LIU B.GMC:Graph-based multi-viewclustering[J].IEEE Transactions on Knowledge and Data Engineering,2019,32(6):1116-1129. [11]LI Z,TANG C,LIU X,et al.Consensus graph learning formulti-view clustering[J].IEEE Transactions on Multimedia,2021,24:2461-2472. [12]FANG S G,HUANG D,WANG C D,et al.Joint multi-view unsupervised feature selection and graph learning[J].IEEE Tran-sactions on Emerging Topics in Computational Intelligence,2023,8(1):16-31. [13]LIU H,MAO H,FU Y.Robust multi-view feature selection[C]//2016 IEEE 16th International Conference on Data Mining(ICDM).IEEE,2016:281-290. [14]YUAN H,LI J,LIANG Y,et al.Multi-view unsupervised feature selection with tensor low-rank minimization[J].Neurocomputing,2022,487:75-85. [15]ZHANG H,WU D,NIE F,et al.Multilevel projections with adaptive neighbor graph for unsupervised multi-view feature selection[J].Information Fusion,2021,70:129-140. [16]WAN Y,SUN S,ZENG C.Adaptive similarity embedding forunsupervised multi-view feature selection[J].IEEE Transactions on Knowledge and Data Engineering,2020,33(10):3338-3350. [17]TANG C,ZHENG X,LIU X,et al.Cross-view locality pre-served diversity and consensus learning for multi-view unsupervised feature selection[J].IEEE Transactions on Knowledge and Data Engineering,2021,34(10):4705-4716. [18]YU X,LIU H,WU Y,et al.Fine-grained Similarity Fusion for Multi-view Spectral Clustering[J].Information Sciences,2021,568:350-368. [19]XIAO Q,DU S,SONG J,et al.Hyper-laplacian regularizedmulti-view subspace clustering with a new weighted tensor nuclear norm[J].IEEE Access,2021,9:118851-118860. [20]ZHAN K,NIE F,WANG J,et al.Multiview consensus graph clustering[J].IEEE Transactions on Image Processing,2018,28(3):1261-1270. [21]LI X,ZHANG H,ZHANG R.Adaptive graph auto-encoder for general data clustering[J].IEEE Transactions on Pattern Ana-lysis and Machine Intelligence,2021,44(12):9725-9732. [22]PAN E,KANG Z.Multi-view contrastive graph clustering[J].Advances in Neural Information Processing Systems,2021,34:2148-2159. [23]GALLEGO A J,RICO-JUAN J R,VALERO-MAS J J.Efficient k-nearest neighbor search based on clustering and adaptive k values[J].Pattern Recognition,2022,122:108356. [24]GENG L,WANG C P,et al.Robust multi-view clustering algorithm based on sparse consensus graph decomposition [J].Journal of Zhejiang University(Science Edition),2023,50(5):569-579. [25]NIE F,WANG X,HUANG H.Clustering and projected clustering with adaptive neighbors[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2014:977-986. [26]LIANG C,WANG L,LIU L,et al.Multi-view unsupervised feature selection with tensor robust principal component analysis and consensus graph learning[J].Pattern Recognition,2023,141:109632. [27]REN Z,LI X,MUKHERJEE M,et al.Robust multi-view graph clustering in latent energy-preserving embedding space[J].Information Sciences,2021,569:582-595. [28]CHEN M S,HUANG L,WANG C D,et al.Multi-view clustering in latent embedding space[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020:3513-3520. [29]CHEN M S,CAI X S,LIN J Q,et al.Tensor Learning Induced Multi-View Spectral Clustering [J].Chinese Journal of Computing,2024,47(1):52-68. [30]DONG X,ZHU L,SONG X,et al.Adaptive collaborative similarity learning for unsupervised multi-view feature selection[J].arXiv:1904.11228,2019. [31]WANG J,LIANG J,YAO K,et al.Graph convolutional autoencoders with co-learning of graph structure and node attributes[J].Pattern Recognition,2022,121:108215. [32]ZHANG C,FU H,LIU S,et al.Low-rank tensor constrained multiview subspace clustering[C]//Proceedings of the IEEE International Conference on Computer Vision.2015:1582-1590. [33]REN Z,SUN Q,WU B,et al.Learning latent low-rank andsparse embedding for robust image feature extraction[J].IEEE Transactions on Image Processing,2019,29:2094-2107. [34]NIE F,HUANG H,CAI X,et al.Efficient and robust feature selection via joint ?2,1-norms minimization[C]//International Conference Neural Information Processing Systems.2010. [35]WANG S,LIU X,ZHU E,et al.Multi-view Clustering via Late Fusion Alignment Maximization[C]//IJCAI.2019:3778-3784. |
[1] | DU Yuanhua, CHEN Pan, ZHOU Nan, SHI Kaibo, CHEN Eryang, ZHANG Yuanpeng. Correntropy Based Multi-view Low-rank Matrix Factorization and Constraint Graph Learning for Multi-view Data Clustering [J]. Computer Science, 2025, 52(6A): 240900131-10. |
[2] | DENG Qiang, YANG Yan and WANG Hao. Improved Multi-view Clustering Ensemble Algorithm [J]. Computer Science, 2017, 44(1): 65-70. |
|